15,175 research outputs found

    Proof of Factorization of Fragmentation Function in Non-Equilibrium QCD

    Full text link
    In this paper we prove factorization of fragmentation function in non-equilibrium QCD by using Schwinger-Keldysh closed-time path integral formalism. We use the background field method of QCD in a pure gauge in path integral approach to prove factorization of fragmentation function in non-equilibrium QCD. Our proof is valid in any arbitrary gauge fixing parameter α\alpha. This may be relevant to study hadron production from quark-gluon plasma at high energy heavy-ion colliders at RHIC and LHC.Comment: 13 pages latex, (Final Published Version, Annals of Physics

    Proton-proton physics in ALICE

    Get PDF
    The ALICE experiment has several unique features which makes it an important contributor to proton-proton physics at the LHC, in addition to its specific design goal of studying the physics of strongly interacting matter in heavy-ion collisions. The unique capabilities include its low transverse momentum (\pT) acceptance, excellent vertexing, particle identification over a broad \pT range and jet reconstruction. In this report, a brief review of ALICE capabilities is given for studying bulk properties of produced particles which characterize the underlying events, and the physics of heavy-flavour, quarkonia, photons, di-leptons and jets

    Renormalization Group Equation and QCD Coupling Constant in the Presence of SU(3) Chromo-Electric Field

    Full text link
    We solve renormalization group equation in QCD in the presence of SU(3) constant chromo-electric field E^a with arbitrary color index a=1,2,...8 and find that the QCD coupling constant \alpha_s depends on two independent casimir/gauge invariants C_1=[E^aE^a] and C_2=[d_{abc}E^aE^bE^c]^2 instead of one gauge invariant C_1=[E^aE^a]. The \beta function is derived from the one-loop effective action. This coupling constant may be useful to study hadron formation from color flux tubes/strings at high energy colliders and to study quark-gluon plasma formation at RHIC and LHC.Comment: 13 pages latex, 4 eps figs, Eur. Phys. J.

    Schwinger Mechanism for Gluon Pair Production in the Presence of Arbitrary Time Dependent Chromo-Electric Field

    Full text link
    We study Schwinger mechanism for gluon pair production in the presence of arbitrary time-dependent chromo-electric background field Ea(t)E^a(t) with arbitrary color index aa=1,2,...8 in SU(3) by directly evaluating the path integral. We obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum dWd4xd2pT\frac{dW}{d^4x d^2p_T} from arbitrary Ea(t)E^a(t). We show that the tadpole (or single gluon) effective action does not contribute to the non-perturbative gluon pair production rate dWd4xd2pT\frac{dW}{d^4x d^2p_T}. We find that the exact result for non-perturbative gluon pair production is independent of all the time derivatives dnEa(t)dtn\frac{d^nE^a(t)}{dt^n} where n=1,2,....∞n=1,2,....\infty and has the same functional dependence on two casimir invariants [Ea(t)Ea(t)][E^a(t)E^a(t)] and [dabcEa(t)Eb(t)Ec(t)]2[d_{abc}E^a(t)E^b(t)E^c(t)]^2 as the constant chromo-electric field EaE^a result with the replacement: Ea→Ea(t)E^a \to E^a(t). This result may be relevant to study the production of a non-perturbative quark-gluon plasma at RHIC and LHC.Comment: 13 pages latex, Published in European Physical Journal

    Photons from Nucleus-Nucleus Collisions at Ultra-Relativistic Energies

    Full text link
    We compare the photon emission rates from hot hadronic matter with in-medium mass shift and Quark Gluon Plasma (QGP). It is observed that the WA98 data can be well reproduced by hadronic initial state with initial temperature ∼200\sim 200 MeV if the universal scaling of temperature dependent hadronic masses are assumed and the evolution of temperature with time is taken from transport model or (3+1) dimensional hydrodynamics. The data can also be reproduced by QGP initial state with similar initial temperature and non-zero initial radial velocity.Comment: Talk given in the International Nuclear Physics Conference, at the University of California, Berkeley, USA, during July 30 - August 3, 200

    Color Octet Contribution to High p_T J/\Psi Production in pp Collisions at \sqrt s = 500 and 200 GeV at RHIC

    Full text link
    We compute \frac{d\sigma}{dp_T} of the J/\psi production in pp collisions at RHIC at \sqrt s = 500 and 200 GeV by using both the color octet and singlet models in the framework of non-relativistic QCD. The J/\psi we compute here includes the direct J/\psi from the partonic fusion processes and the J/\psi coming from the radiative decays of \chi_J's both in the color octet and singlet channel. The high p_T J/\psi production cross section is computed within the PHENIX detector acceptance ranges: -0.35 < \eta < 0.35 and 1.2 < \|\eta| < 2.4, the central electron and forward muon arms. It is found that the color octet contribution to J/\psi production is dominant at RHIC energy in comparison to the color singlet contributions. We compare our results with the recent preliminary data obtained by PHENIX detector for the high p_T J/\psi measurements. While the color singlet model fails to explain the data completely the color octet model is in agreement with the single data point above 2 GeV transverse momentum. A measurement of J/\psi production at RHIC in the next run with better statistics will allow us to determine the validity of the color octet model of J/\psi production at RHIC energies. This is very important because it is necessary to know the exact mechanism for J/\psi production in pp collisions at RHIC if one is to make predictions of J/\psi suppression as a signature of quark-gluon plasma. These mechanisms also play an important role in determining the polarized spin structure function of the proton at RHIC.Comment: 16 pages latex, 6 figure
    • …
    corecore