61 research outputs found

    Thermal and Cold Neutron Computed Tomography at the Los Alamos Neutron Scattering Center Using an Amorphous Silicon Detector Array

    Get PDF
    The use of the EG&G-Heimann RTM 128 [1] or dpiX FS20 [2] amorphous silicon (a-Si) detector array for thermal neutron radiography/computed tomography has proven to be a quick and efficient means of producing high quality digital radiographic images. The resolution, although not as good as film, is about 750 μm with the RTM and 127 μm with the dpiX array with a dynamic range in excess of 2800. In many respects using an amorphous silicon detector is an improvement over other techniques such as imaging with a CCD camera, using a storage phosphor plate or film radiography. Unlike a CCD camera, which is highly susceptible to radiation damage, a-Si detectors can be placed in the beam directly behind the object under examination and do not require any special optics or turning mirrors. The amorphous silicon detector also allows enough data to be acquired to construct a digital image in just a few seconds (minimum gate time 40 ms) whereas film or storage plate exposures can take many minutes and need to be digitized with a scanner. The flat panel can, therefore, acquire a complete 3D computed tomography data set in just a few tens of minutes. While a-Si detectors have been proposed for use in imaging neutron beams [3], this is the first reported implementation of such a detector for neutron imaging [4]

    Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals

    Full text link
    We briefly summarize the reported anomalous effects in deuterated metals at ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on important experiments as well as the theoretical basis for the opposition to interpreting them as cold fusion. Then we critically examine more than 25 theoretical models for CF, including unusual nuclear and exotic chemical hypotheses. We conclude that they do not explain the data.Comment: 51 pages, 4 Figure

    TESS-Keck Survey. V. Twin Sub-Neptunes Transiting The Nearby G Star HD 63935

    Get PDF
    We present the discovery of two nearly identically sized sub-Neptune transiting planets orbiting HD 63935, a bright (V = 8.6 mag), Sun-like (Teff = 5560 K) star at 49 pc. TESS identified the first planet, HD 63935 b (TOI-509.01), in Sectors 7 and 34. We identified the second signal (HD 63935 c) in Keck High Resolution Echelle Spectrometer and Lick Automated Planet Finder radial velocity data as part of our follow-up campaign. It was subsequently confirmed with TESS photometry in Sector 34 as TOI-509.02. Our analysis of the photometric and radial velocity data yielded a robust detection of both planets with periods of 9.0600 ± 0.007 and 21.40 ± 0.0019 days, radii of 2.99 ± 0.14 and 2.90 ± 0.13 R⊕, and masses of 10.8 ± 1.8 and 11.1 ± 2.4 M⊕. We calculated densities for planets b and c consistent with a few percent of the planet mass in hydrogen/helium envelopes. We also describe our survey\u27s efforts to choose the best targets for James Webb Space Telescope atmospheric follow-up. These efforts suggest that HD 63935 b has the most clearly visible atmosphere of its class. It is the best target for transmission spectroscopy (ranked by the transmission spectroscopy metric, a proxy for atmospheric observability) in the so far uncharacterized parameter space comprising sub-Neptune-sized (2.6 R⊕ \u3c Rp \u3c 4 R⊕), moderately irradiated (100 F⊕ \u3c Fp \u3c 1000 F⊕) planets around G stars. Planet c is also a viable target for transmission spectroscopy, and given the indistinguishable masses and radii of the two planets, the system serves as a natural laboratory for examining the processes that shape the evolution of sub-Neptune planets

    The TESS-Keck Survey. II. An Ultra-Short-Period Rocky Planet And Its Siblings Transiting The Galactic Thick-Disk Star TOI-561

    Get PDF
    We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultra-short-period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/H] = −0.41 ± 0.05, [α/Fe] = +0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8 M⊕ and 5.51.6+2.0{5.5}_{-1.6}^{+2.0}g cm−3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3 M⊕ and 1.6 ± 0.6 g cm−3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies

    The TESS-Keck survey. II. An ultra-short-period rocky planet and its siblings transiting the galactic thick-disk star TOI-561

    Get PDF
    We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultrashort- period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/ H] = -0.41 ± 0.05, [a/Fe]=+0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8M⊕ and 5.5+2.0-1.6g cm-3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3M⊕ and 1.6 ± 0.6 g cm-3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, groundbased photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies
    corecore