574 research outputs found

    Evidence of grain growth in the disk of the bipolar proto-planetary nebula M 1--92

    Full text link
    We investigate the dust size and dust shell structure of the bipolar proto-planetary nebula M 1--92 by means of radiative transfer modeling. Our models consists of a disk and bipolar lobes that are surrounded by an AGB shell, each component having different dust characteristics. The upper limit of the grain size amaxa_\mathrm{max} in the lobes is estimated to be 0.5μ0.5 \mum from the polarization value in the bipolar lobe. The amaxa_\mathrm{max} value of the disk is constrained with the disk mass (0.2 M_{\sun}), which was estimated from a previous CO emission line observation. We find a good model with amax=1000.0μa_\mathrm{max}=1000.0 \mum, which provides an approximated disk mass of 0.15 M_{\sun}. Even taking into account uncertainties such as the gas-to-dust mass ratio, a significantly larger dust of amax>100.0μa_\mathrm{max}>100.0 \mum, comparing to the dust in the lobe, is expected. We also estimated the disk inner radius, the disk outer radius, and the envelope mass to be 30 RR_\star(=9 AU), 4500 AU, and 4 M_{\sun}, respectively, where vexpv_\mathrm{exp} is the expansion velocity. If the dust existing in the lobes in large separations from the central star undergoes little dust processing, the dust sizes preserves the ones in the dust formation. Submicron-sized grains are found in many objects besides M 1--92, suggesting that the size does not depend much on the object properties, such as initial mass of the central star and chemical composition of the stellar system. On the other hand, the grain sizes in the disk do. Evidence of large grains has been reported in many bipolar PPNs, including M 1--92. This result suggests that disks play an important role in grain growth.Comment: 8 pages with 3 figures. Accepted for publication in A&

    Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2

    Full text link
    Magnetic and dielectric properties with varying magnitude and direction of magnetic field H have been investigated for a triangular lattice helimagnet MnI2. The in-plane electric polarization P emerges in the proper screw magnetic ground state below 3.5 K, showing the rearrangement of six possible multiferroic domains as controlled by the in-plane H. With every 60-degree rotation of H around the [001]-axis, discontinuous 120-degree flop of P-vector is observed as a result of the flop of magnetic modulation vector q. With increasing the in-plane H above 3 T, however, the stable q-direction changes from q|| to q||, leading to a change of P-flop patterns under rotating H. At the critical field region (~3 T), due to the phase competition and resultant enhanced q-flexibility, P-vector smoothly rotates clockwise twice while H-vector rotates counter-clockwise once.Comment: 4 pages, 3 figures. Accepted in Physical Review Letter

    Assembling strategies in extrinsic evolvable hardware with bi-directional incremental evolution

    Get PDF
    Bidirectional incremental evolution (BIE) has been proposed as a technique to overcome the ”stalling” effect in evolvable hardware applications. However preliminary results show perceptible dependence of performance of BIE and quality of evaluated circuit on assembling strategy applied during reverse stage of incremental evolution. The purpose of this paper is to develop assembling strategy that will assist BIE to produce relatively optimal solution with minimal computational effort (e.g. the minimal number of generations)

    Interplay of Spin-Orbit Interaction and Electron Correlation on the Van Vleck Susceptibility in Transition Metal Compounds

    Full text link
    We have studied the effects of electron correlation on Van Vleck susceptibility (χVV\chi_{\rm{VV}}) in transition metal compounds. A typical crossover behavior is found for the correlation effect on χVV\chi_{\rm{VV}} as sweeping spin-orbit interaction, λ\lambda. For a small λ\lambda, orbital fluctuation plays a dominant role in the correlation enhancement of χVV\chi_{\rm{VV}}; however, the enhancement rate is rather small. In contrast, for an intermediate λ\lambda, χVV\chi_{\rm{VV}} shows a substantial increase, accompanied by the development of spin fluctuation. We will discuss the behavior of χVV\chi_{\rm{VV}} in association with the results of Knight-shift experiments on Sr2_2RuO4_4 and an anomalously large magnetic susceptibility observed for 5d5d Ir compounds.Comment: 5 pages, 3 figures, to appear in J. Phys. Soc. Jp

    Effect of Spin-Orbit Interaction in Spin-Triplet Superconductor: Structure of d{\bf d}-vector and Anomalous 17^{17}O-NQR Relaxation in Sr2_2RuO4_4

    Full text link
    Supposing the spin-triplet superconducting state of Sr2_2RuO4_4, the spin-orbit (SO) coupling associated with relative motion in Cooper pairs is calculated by extending the method for the dipole-dipole coupling given by Leggett in the superfluid 3^{3}He. It is shown that the SO coupling works only in the equal-spin pairing (ESP) state to make the pair angular momentum L\hbar{\vec L} and the pair spin angular momentum id×d{\rm i}{\vec d}\times{\vec d}^{*} parallel with each other. The SO coupling gives rise to the internal Josephson effect in a chiral ESP state as in superfluid A-phase of 3^3He with a help of an additional anisotropy arising from SO coupling of atomic origin which works to direct the {\bf d}-vector into abab-plane. This resolves the problem of the anomalous relaxation of 17^{17}O-NQR and the structure of {\bf d}-vector in Sr2_2RuO4_4.Comment: Accepted for publication in J. Phys. Soc. Jpn. vol.79 (2010), No.2 (February issue); 18 pages, 2 figure

    The Water-ice Feature in Near-infrared Disk-scattered Light around HD 142527:Micron-sized Icy Grains Lifted up to the Disk Surface?

    Get PDF
    We study the 3 μ3~\mum scattering feature of water ice detected in the outer disk of HD 142527 by performing radiative transfer simulations. We show that an ice mass abundance at the outer disk surface of HD 142527 is much lower than estimated in a previous study. It is even lower than inferred from far-infrared ice observations, implying ice disruption at the disk surface. Next, we demonstrate that a polarization fraction of disk-scattered light varies across the ice-band wavelengths depending on ice grain properties; hence, polarimetric spectra would be another tool for characterizing water-ice properties. Finally, we argue that the observed reddish disk-scattered light is due to grains with a few microns in size. To explain the presence of such grains at the disk surface, we need a mechanism that can efficiently oppose dust settling. If we assume turbulent mixing, our estimate requires α2×103\alpha\gtrsim2\times10^{-3}, where α\alpha is a non-dimensional parameter describing the vertical diffusion coefficient of grains. Future observations probing gas kinematics would be helpful to elucidate vertical grain dynamics in the outer disk of HD 142527.Comment: 21 pages, 14 figures, 1 table; Accepted for publication in Ap
    corecore