489 research outputs found
Composite Fermions in Negative Effective Magnetic Field: A Monte-Carlo Study
The method of Jain and Kamilla [PRB {\bf 55}, R4895 (1997)] allows numerical
generation of composite fermion trial wavefunctions for large numbers of
electrons in high magnetic fields at filling fractions of the form nu=p/(2mp+1)
with m and p positive integers. In the current paper we generalize this method
to the case where the composite fermions are in an effective (mean) field with
opposite sign from the actual physical field, i.e. when p is negative. We
examine both the ground state energies and the low energy neutral excitation
spectra of these states. Using particle-hole symmetry we can confirm the
correctness of our method by comparing results for the series m=1 with p>0
(previously calculated by others) to our results for the conjugate series m=1
with p <0. Finally, we present similar results for ground state energies and
low energy neutral excitations for the states with m=2 and p <0 which were not
previously addressable, comparing our results to the m=1 case and the p > 0,
m=2 cases.Comment: 11 page
High-speed direct-modulation of InP microdisk lasers
We demonstrate for the first time high-speed direct-modulation of InP microdisk lasers by exploiting longitudinal mode competition. High-speed operation is demonstrated by means of S21 and PRBS modulation. We show open eye diagrams and bit-error rates up to 10 Gb/s
Excitation gaps in fractional quantum Hall states: An exact diagonalization study
We compute energy gaps for spin-polarized fractional quantum Hall states in
the lowest Landau level at filling fractions nu=1/3, 2/5,3/7 and 4/9 using
exact diagonalization of systems with up to 16 particles and extrapolation to
the infinite system-size limit. The gaps calculated for a pure Coulomb
interaction and ignoring finite width effects, disorder and LL mixing agree
with predictions of composite fermion theory provided the logarithmic
corrections to the effective mass are included. This is in contrast with
previous estimates, which, as we show, overestimated the gaps at nu=2/5 and 3/7
by around 15%. We also study the reduction of the gaps as a result of the
non-zero width of the 2D layer. We show that these effects are accurately
accounted for using either Gaussian or z*Gaussian' (zG) trial wavefunctions,
which we show are significantly better variational wavefunctions than the
Fang-Howard wavefunction. For quantum well parameters typical of
heterostructure samples, we find gap reductions of around 20%. The experimental
gaps, after accounting heuristically for disorder,are still around 40% smaller
than the computed gaps. However, for the case of tetracene layers
inmetal-insulator-semiconductor (MIS) devices we find that the measured
activation gaps are close to those we compute. We discuss possible reasons why
the difference between computed and measured activation gaps is larger in GaAs
heterostructures than in MIS devices. Finally, we present new calculations
using systems with up to 18 electrons of the gap at nu=5/2 including width
corrections.Comment: 18 pages, 17 figure
Interaction dependence of composite fermion effective masses
We estimate the composite fermion effective mass for a general two particle
potential r^{-\alpha} using exact diagonalization for polarized electrons in
the lowest Landau level on a sphere. Our data for the ground state energy at
filling fraction \nu=1/2 as well as estimates of the excitation gap at \nu=1/3,
2/5 and 3/7 show that m_eff \sim \alpha^{-1}.Comment: 4 pages, RevTeX, 5 figure
Microfabricated Chemical Analysis Systems for Environmental Applications
Recent contributions to the design, development, and fabrication of microtechnological devices for chemical analysis are summarized. The discussion includes microdisk-electrode arrays for voltammetric analysis of trace metals, and micro total-analysis systems for coulometric nanotitrations
of different analytes
Dynamical Correlations in a Half-Filled Landau Level
We formulate a self-consistent field theory for the Chern-Simons fermions to
study the dynamical response function of the quantum Hall system at .
Our scheme includes the effect of correlations beyond the random-phase
approximation (RPA) employed to this date for this system. The resulting
zero-frequency density response function vanishes as the square of the wave
vector in the long-wavelength limit. The longitudinal conductivity calculated
in this scheme shows linear dependence on the wave vector, like the
experimentals results and the RPA, but the absolute values are higher than the
experimental results.Comment: 4 pages, revtex, 3 figures included. Corrected typo
Possible composite-fermion liquid as a crossover from Wigner crystal to bubble phase in higher Landau level
The ground state cohesive energies per electron of the composite fermion (CF)
Fermi sea, the Laughlin state and the charge density wave (CDW) at higher
Landau levels (LLs) are computed. It is shown that whereas for LL,
the CDW state is generally more energetically preferable than those of the CF
liquid and the Laughlin liquid, the CF liquid state unexpectedly
has lower ground state energy than that of the CDW state. We suggest this CF
liquid between the Wigner crystal and the bubble phase may lead to the
crossover from the normal integer quantum Hall liquid to the novel re-entrant
integer quantum Hall state observed in the recent magneto-transport
experiments
A Theory of Ferroelectric Phase Transition in SrTiO induced by Isotope Replacement
A theory to describe the dielectric anomalies and the ferroelectric phase
transition induced by oxygen isotope replacement in SrTiO is developed. The
proposed model gives consistent explanation between apparently contradictory
experimental results on macroscopic dielectric measurements versus microscopic
lattice dynamical measurements by neutron scattering studies. The essential
feature is described by a 3-state quantum order-disorder system characterizing
the degenerated excited states in addition to the ground state of TiO
cluster. The effect of isotope replacement is taken into account through the
tunneling frequency between the excited states. The dielectric properties are
analyzed by the mean field approximation (MFA), which gives qualitative
agreements with experimental results throughout full range of the isotope
concentration.The phase diagram in the temperature-tunneling
frequencycoordinate is studied by a QMC method to confirm the qualitative
validity of the MFA analysis.Comment: 26 pages, 8 figure
Fermi-sea-like correlations in a partially filled Landau level
The pair distribution function and the static structure factor are computed
for composite fermions. Clear and robust evidence for a structure is
seen in a range of filling factors in the vicinity of the half-filled Landau
level. Surprisingly, it is found that filled Landau levels of composite
fermions, i.e. incompressible FQHE states, bear a stronger resemblance to a
Fermi sea than do filled Landau levels of electrons.Comment: 23 pages, revte
- …