256 research outputs found

    Cosmic dance in the Shapley Concentration Core - I. A study of the radio emission of the BCGs and tailed radio galaxies

    Get PDF
    The Shapley Concentration (z≈0.048z\approx0.048) covers several degrees in the Southern Hemisphere, and includes galaxy clusters in advanced evolutionary stage, groups of clusters in the early stages of merger, fairly massive clusters with ongoing accretion activity, and smaller groups located in filaments in the regions between the main clusters. With the goal to investigate the role of cluster mergers and accretion on the radio galaxy population, we performed a multi-wavelength study of the BCGs and of the galaxies showing extended radio emission in the cluster complexes of Abell 3528 and Abell 3558. Our study is based on a sample of 12 galaxies. We observed the clusters with the GMRT at 235, 325 and 610 MHz, and with the VLA at 8.46 GHz. We complemented our study with the TGSS at 150 MHz, the SUMSS at 843 MHz and ATCA at 1380, 1400, 2380, and 4790 MHz data. Optical imaging with ESO-VST and mid-IR coverage with WISE are also available for the host galaxies. We found deep differences in the properties of the radio emission of the BCGs in the two cluster complexes. The BCGs in the A3528 complex and in A3556, which are relaxed cool-core objects, are powerful active radio galaxies. They also present hints of restarted activity. On the contrary, the BCGs in A3558 and A3562, which are well known merging systems, are very faint, or quiet, in the radio band. The optical and IR properties of the galaxies are fairly similar in the two complexes, showing all passive red galaxies. Our study shows remarkable differences in the radio properties of the BGCs, which we relate to the different dynamical state of the host cluster. On the contrary, the lack of changes between such different environments in the optical band suggests that the dynamical state of galaxy clusters does not affect the optical counterparts of the radio galaxies, at least over the life-time of the radio emission.Comment: 24 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    LoCuSS: The steady decline and slow quenching of star formation in cluster galaxies over the last four billion years

    Full text link
    We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15<z<0.30 from the Local Cluster Substructure Survey (LoCuSS), combining wide-field Spitzer 24um data with extensive spectroscopy of cluster members. The specific-SFRs of massive (M>10^10 M_sun) star-forming cluster galaxies within r200 are found to be systematically 28% lower than their counterparts in the field at fixed stellar mass and redshift, a difference significant at the 8.7-sigma level. This is the unambiguous signature of star formation in most (and possibly all) massive star-forming galaxies being slowly quenched upon accretion into massive clusters, their SFRs declining exponentially on quenching time-scales in the range 0.7-2.0 Gyr. We measure the mid-infrared Butcher-Oemler effect over the redshift range 0.0-0.4, finding rapid evolution in the fraction (f_SF) of massive (M_K3M_sun/yr, of the form f_SF (1+z)^7.6. We dissect the origins of the Butcher-Oemler effect, revealing it to be due to the combination of a ~3x decline in the mean specific-SFRs of star-forming cluster galaxies since z~0.3 with a ~1.5x decrease in number density. Two-thirds of this reduction in the specific-SFRs of star-forming cluster galaxies is due to the steady cosmic decline in the specific-SFRs among those field galaxies accreted into the clusters. The remaining one-third reflects an accelerated decline in the star formation activity of galaxies within clusters. The slow quenching of star-formation in cluster galaxies is consistent with a gradual shut down of star formation in infalling spiral galaxies as they interact with the intra-cluster medium via ram-pressure stripping or starvation mechanisms. We find no evidence for the build-up of cluster S0 bulges via major nuclear star-burst episodes.Comment: 24 pages, 12 figures. Accepted for publication in Ap

    UV-IR luminosity functions and stellar mass functions of galaxies in the Shapley supercluster core

    Full text link
    We present a panchromatic study of luminosity functions (LFs) and stellar mass functions (SMFs) of galaxies in the core of the Shapley supercluster at z=0.048, in order to investigate how the dense environment affects the galaxy properties, such as star formation (SF) or stellar masses. We find that while faint-end slopes of optical and NIR LFs steepen with decreasing density, no environment effect is found in the slope of the SMFs. This suggests that mechanisms transforming galaxies in different environments are mainly related to the quench of SF rather than to mass-loss. The Near-UV (NUV) and Far-UV (FUV) LFs obtained have steeper faint-end slopes than the local field population, while the 24Ό\mum and 70Ό\mum galaxy LFs for the Shapley supercluster have shapes fully consistent with those obtained for the local field galaxy population. This apparent lack of environmental dependence for the infrared (IR) LFs suggests that the bulk of the star-forming galaxies that make up the observed cluster IR LF have been recently accreted from the field and have yet to have their SF activity significantly affected by the cluster environment.Comment: 5 pages, 3 figures, JENAM 2010, Symposium 2. Conference proceeding

    Age, Metallicity and Star Formation History of Cluster Galaxies at z~0.3 F

    Get PDF
    We investigate the color-magnitude distribution in the rich cluster AC 118 at z=0.31. The sample is selected by the photometric redshift technique, allowing to study a wide range of properties of stellar populations, and is complete in the K-band, allowing to study these properties up to a given galaxy mass. We use galaxy templates based on population synthesis models to translate the physical properties of the stellar populations - formation epoch, time-scale of star formation, and metallicity - into observed magnitudes and colors. In this way we show that a sharp luminosity-metallicity relation is inferred without any assumption on the galaxy formation scenario (either monolithic or hierarchical). Our data exclude significant differences in star formation histories along the color-magnitude relation, and therefore confirm a pure metallicity interpretation for its origin, with an early (z~5) formation epoch for the bulk of stellar populations. The dispersion in the color-magnitude diagram implies that fainter galaxies in our sample (K~18) ceased to form stars as late as z~0.5, in agreement with the picture that these galaxies were recently accreted into the cluster environment. The trend with redshift of the total stellar mass shows that half of the luminous mass in AC 118 was already formed at $z~2, but also that 20% of the stars formed at z<1.Comment: 16 pages, 10 figures. ApJ in pres

    Mass, Light and Colour of the Cosmic Web in the Supercluster SCL2243-0935 (z=0.447)

    Full text link
    Context: In 2.2m MPG-ESO/WFI data we discovered several mass peaks through weak lensing, forming a possible supercluster at redshift 0.45. Through multi-colour wide-field imaging with CFHT/Megaprime and INT/WFC we identify early-type galaxies and trace the supercluster network with them. Through EMMI/NTT multi-object spectroscopy we verify the initial shear-selected cluster candidates. Using weak lensing we obtain mass estimates for the supercluster centre and the filaments. Results: We identified the centre of the SCL2243-0935 supercluster, MACS J2243-0935, which was found independently by Ebeling et al. (2010). 13 more clusters or overdensities are embedded in a filamentary network, half of them are already spectroscopically confirmed. Three (5-15) Mpc filaments are detected, and we estimate the global size of SCL2243 to 45x15x50 Mpc, making it one of the largest superclusters known at intermediate redshifts. Weak lensing yields r_200=(2.06+/-0.13) Mpc and M_200=(1.54+/-0.29)x10^15 M_sun for MACS J2243 with M/L=428+/-82, very similar to results from size-richness cluster scaling relations. Integrating the weak lensing surface mass density over the supercluster network (defined by increased i-band luminosity or g-i colours), we find (1.53+/-1.01)x10^15 M_sun and M/L=305+/-201 for the three main filaments, consistant with theoretical predictions. The filaments' projected surface mass density is 0.007-0.012, corresponding to 10-100 times the critical density. The greatly varying density of the cosmic web is also reflected in the mean colour of galaxies. Conclusions: SCL2243 is significantly larger and much more richly structured than other known superclusters such as A901/902 or MS0302 studied with weak lensing before. It is a text-book supercluster with little contamination along the line of sight, making it a perfect sandbox for testing new techniques probing the cosmic web.Comment: 26 pages, 16 figures, accepted for publication Astronomy and Astrophysics. Minor corrections implemented as requested by the refere

    The SDSS-UKIDSS Fundamental Plane of Early-type Galaxies

    Full text link
    We derive the Fundamental Plane (FP) relation for a sample of 1430 early-type galaxies in the optical (r band) and the near-infrared (K band), by combining SDSS and UKIDSS data. With such a large, homogeneous dataset, we are able to assess the dependence of the FP on the waveband. Our analysis indicates that the FP of luminous early-type galaxies is essentially waveband independent, with its coefficients increasing at most by 8% from the optical to the NIR. This finding fits well into a consistent picture where the tilt of the FP is not driven by stellar populations, but results from other effects, such as non-homology. In this framework, the optical and NIR FPs require more massive galaxies to be slightly more metal rich than less massive ones, and to have highly synchronized ages, with an age variation per decade in mass smaller than a few percent.Comment: 7 pages, 2 figures, accepted for publication on Ap

    The VIMOS VLT Deep Survey - First epoch VVDS-Deep survey: 11564 spectra with 17.5<=IAB<=24, and the redshift distribution over 0< z <=5

    Get PDF
    This paper presents the ``First Epoch'' sample from the VIMOS VLT Deep Survey (VVDS). The VVDS goals, observations, data reduction with VIPGI, and redshift measurement with KBRED are discussed. Data have been obtained with the VIsible Multi Object Spectrograph (VIMOS) on the ESO-VLT UT3, allowing to observe ~600 slits simultaneously at R~230. A total of 11564 objects have been observed in the VVDS-02h and VVDS-CDFS Deep fields over a total area of 0.61deg^2, selected solely on the basis of apparent magnitude 17.5 <=I_{AB} <=24. The VVDS covers the redshift range 0 < z <= 5. It is successfully going through the ``redshift desert'' 1.5<z<2.2, while the range 2.2<z<2.7 remains of difficult access because of the VVDS wavelength coverage.A total of 9677 galaxies have a redshift measurement, 836 are stars, 90 are AGNs, and a redshift could not be measured for 961 objects. There are 1065 galaxies with a measured redshift z>1.4. The survey reaches a redshift measurement completeness of 78% overall (93% including less reliable objects), with a spatial sampling of the population of galaxies of 25% and ~30% in the VVDS-02h and VVDS-CDFS. The redshift accuracy measured from repeated observations with VIMOS and comparison to other surveys is ~276km/s. From this sample we present for the first time the redshift distribution of a magnitude limited spectroscopic sample down to IAB=24. The redshift distribution has a median of z=0.62, z=0.65, z=0.70, and z=0.76, for magnitude limited samples with IAB<=22.5, 23, 23.5, and 24. A high redshift tail above redshift 2 and up to redshift 5 becomes readily apparent for IAB>23.5, probing the bright star forming population of galaxies. This sample provides an unprecedented dataset to study galaxy evolution over 90% of the life of the universeComment: 30 pages, accepted 22-Feb-05 in A&

    The VIMOS-VLT Deep Survey - The evolution of galaxy clustering per spectral type to z~1.5

    Full text link
    We measure the evolution of clustering for galaxies with different spectral types from 6495 galaxies with 17.5<=I_AB<=24 and measured spectroscopic redshift in the first epoch VIMOS-VLT Deep Survey. We classify our sample into 4 classes, based on the fit of well-defined galaxy spectral energy distributions on observed multi-color data. We measure the projected function wp(rp) and estimate the best-fit parameters for a power-law real-space correlation function. We find the clustering of early-spectral-type galaxies to be markedly stronger than that of late-type galaxies at all redshifts up to z<=1.2. At z~0.8, early-type galaxies display a correlation length r_0=4.8+/-0.9h^{-1}Mpc, while late types have r_0=2.5+/-0.4h^{-1}Mpc. The clustering of these objects increases up to r_0=3.42+/-0.7h^{-1}Mpc for z~1.4. The relative bias between early- and late-type galaxies within our magnitude-limited survey remains approximately constant with b~1.7-1.8 from z~=0.2 up to z~=1, with indications for a decrease at z>1.2, due to the growth in clustering of the star-forming population. We find similar results when splitting the sample into `red' and `blue' galaxies using the observed color bi-modality. When compared to the expected linear growth of mass fluctuations, a natural interpretation of these observations is that: (a) the assembly of massive early type galaxies is already mostly complete in the densest dark matter halos at z~=1; (b) luminous late-type galaxies are located in higher-density, more clustered regions of the Universe at z~=1.5 than at present, indicating that star formation activity is progressively increasing, going back in time, in the higher-density peaks that today are mostly dominated by old galaxies.Comment: 12 pages, Accepted on 11-Feb-06 for publication in Astronomy and Astrophysic

    The VIMOS VLT Deep Survey :Evolution of the major merger rate since z~1 from spectroscopicaly confirmed galaxy pairs

    Full text link
    From the VIMOS VLT Deep Survey we use a sample of 6447 galaxies with I_{AB} < 24 to identify 251 pairs of galaxies, each member with a secure spectroscopic redshift, which are close in both projected separation and in velocity. We find that at z ~ 0.9, 10.9 +/- 3.2 % of galaxies with M_B(z) < -18-Qz are in pairs with separations dr < 20 kpc/h, dv < 500 km/s, and with dM_B < 1.5, significantly larger than 3.76 +/- 1.71 % at z ~ 0.5; we find that the pair fraction evolves as (1+z)^m with m = 2.49 +/- 0.56. For brighter galaxies with M_B(z=0) < -18.77, the pair fraction is higher and its evolution with redshift is somewhat flatter with m=1.88 \pm 0.40, a property also observed for galaxies with increasing stellar masses. Early type, dry mergers, pairs increase their relative fraction from 3 % at z ~ 0.9 to 12 % at z ~ 0.5. We find that the merger rate evolves as N_{mg}=(9.05 +/- 3.76) * 10^{-4}) * (1+z)^{2.43 +/- 0.76}. We find that the merger rate of galaxies with M_B(z) < -18-Qz has significantly evolved since z ~ 1. The merger rate is increasing more rapidly with redshift for galaxies with decreasing luminosities, indicating that the flat evolution found for bright samples is not universal. The merger rate is also strongly dependent on the spectral type of galaxies involved, late type mergers being more frequent in the past, while early type mergers are more frequent today, contributing to the rise in the local density of early type galaxies. About 20 % of the stellar mass in present day galaxies with log(M/M_{sun}) > 9.5 has been accreted through major merging events since z ~ 1, indicating that major mergers have contributed significantly to the growth in stellar mass density of bright galaxies over the last half of the life of the Universe.Comment: 22 pages, 19 figures, accepted in A&
    • 

    corecore