57 research outputs found

    Boson Dominance in nuclei

    Full text link
    We present a new method of bosonization of fermion systems applicable when the partition function is dominated by composite bosons. Restricting the partition function to such states we get an euclidean bosonic action from which we derive the Hamiltonian. Such a procedure respects all the fermion symmetries, in particular fermion number conservation, and provides a boson mapping of all fermion operators.Comment: 12 page

    Hermitian boson mapping and finite truncation

    Full text link
    Starting from a general, microscopic fermion-to-boson mapping that preserves Hermitian conjugation, we discuss truncations of the boson Fock space basis. We give conditions under which the exact boson images of finite fermion operators are also finite (e.g., a 1+2-body fermion Hamiltonian is mapped to a 1+2-body boson Hamiltonian) in the truncated basis. For the most general case, where the image is not necessarily exactly finite, we discuss how to make practical and controlled approximations.Comment: 12 pages in RevTex with no figures, Los Alamos preprint # LA-UR-94-146

    Few-Body States in Fermi-Systems and Condensation Phenomena

    Full text link
    Residual interactions in many particle systems lead to strong correlations. A multitude of spectacular phenomenae in many particle systems are connected to correlation effects in such systems, e.g. pairing, superconductivity, superfluidity, Bose-Einstein condensation etc. Here we focus on few-body bound states in a many-body surrounding.Comment: 10 pages, proceedings 1st Asian-Pacific Few-Body Conference, needs fbssuppl.sty of Few-Body System

    Applicability of self-consistent mean-field theory

    Full text link
    Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized or not in level repulsive region. The derived condition states that an iterative calculation of CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of the numerical calculation, it is shown that the analytic condition works well for a realistic case.Comment: 11 pages, 8 figure

    q- Deformed Boson Expansions

    Full text link
    A deformed boson mapping of the Marumori type is derived for an underlying su(2)su(2) algebra. As an example, we bosonize a pairing hamiltonian in a two level space, for which an exact treatment is possible. Comparisons are then made between the exact result, our q- deformed boson expansion and the usual non - deformed expansion.Comment: 8 pages plus 2 figures (available upon request

    Single Boson Images Via an Extended Holstein Primakoff Mapping

    Get PDF
    The Holstein-Primakoff mapping for pairs of bosons is extended in order to accommodate single boson mapping. The proposed extension allows a variety of applications and especially puts the formalism at finite temperature on firm grounds. The new mapping is applied to the O(N+1) anharmonic oscillator with global symmetry broken down to O(N). It is explicitly demonstrated that N-Goldstone modes appear. This result generalizes the Holstein-Primakoff mapping for interacting boson as developed in ref.[1].Comment: 9 pages, LaTeX. Physical content unchanged. Unnecessary figure remove

    Boson Expansion Methods in (1+1)-dimensional Light-Front QCD

    Full text link
    We derive a bosonic Hamiltonian from two dimensional QCD on the light-front. To obtain the bosonic theory we find that it is useful to apply the boson expansion method which is the standard technique in quantum many-body physics. We introduce bilocal boson operators to represent the gauge-invariant quark bilinears and then local boson operators as the collective states of the bilocal bosons. If we adopt the Holstein-Primakoff type among various representations, we obtain a theory of infinitely many interacting bosons, whose masses are the eigenvalues of the 't Hooft equation. In the large NN limit, since the interaction disappears and the bosons are identified with mesons, we obtain a free Hamiltonian with infinite kinds of mesons.Comment: 20 pages, latex, no figures, journal version (no significant changes), to appear in Phys. Rev.

    Dirac Sea Effects on Superfluidity in Nuclear Matter

    Full text link
    We study two kinds of Dirac sea effects on the 1S0^1S_0 pairing gap in nuclear matter based on the relativistic Hartree approximation to quantum hadrodynamics and the Gor'kov formalism. We show that the vacuum fluctuation effect on the nucleon effective mass is more important than the direct coupling between the Fermi sea and the Dirac sea due to the pairing interaction. The effects of the high-momentum cutoff are also discussed.Comment: 11 pages, 3 eps figures included, uses REVTeX (with \tightenlines

    International Conference on Nuclear Structure

    No full text
    corecore