25 research outputs found

    20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years

    Get PDF
    The administration of endocrine therapy for 5 years substantially reduces recurrence rates during and after treatment in women with early-stage, estrogen-receptor (ER)-positive breast cancer. Extending such therapy beyond 5 years offers further protection but has additional side effects. Obtaining data on the absolute risk of subsequent distant recurrence if therapy stops at 5 years could help determine whether to extend treatment

    Der Vakuum-Extraktor

    No full text

    Dendrimers as scaffolds for Reversible Addition Fragmentation Chain Transfer (RAFT) agents: A route to star-shaped block copolymers

    No full text
    Star-shaped block copolymers of styrene and n-butyl acrylate having three, six, and twelve pendent arms were successfully synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Dendritic cores (based on 1,1,1-trimethylolpropane) of generation 0, 1, and 2 have been functionalized with 3-benzylsulfanylthiocarbonylsulfanylpropionic ester groups and have subsequently been employed to mediate the polymerization of styrene and n-butyl acrylate to generate macro-star-RAFT agents as starting materials for chain extension. The chain extension of the macro-star-RAFT agents with either styrene or n-butyl acrylate by bulk free radical polymerization at 60°C gives narrowly distributed polymer (final polydispersities close to 1.2) increasing linearly in molecular weight with increasing monomer-to-polymer conversion. However, with an increasing number of arms (i.e., when going from three- to twelve-armed star polymers), the chain extension becomes significantly less efficient. The molecular weight of the generated block copolymers was assessed using 1H NMR spectroscopy as well as size exclusion chromatography calibrated with linear polystyrene standards. The hydrodynamic radius, Rh, of the star block copolymers as well as the precursor star polymers was determined in tetrahydrofuran by dynamic light scattering (90°) at 25°C. Interestingly, the observed Rh-Mn relationships indicate a stronger dependence of Rh on Mn for poly(butyl acrylate) stars than for the corresponding styrene polymers. Rh increases significantly when the macro-star-RAFT agent is chain extended with either styrene or n-butyl acrylate. © CSIRO 2005

    Dendrimers as scaffolds for multifunctional reversible addition-fragmentation chain transfer agents: Syntheses and polymerization

    No full text
    The synthesis and characterization of novel first- and second-generation true dendritic reversible addition-fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3-benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z-group architecture based on 1,1,1-hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1. 3 for PS) via bulk free-radical polymerization at 60°C. The novel dendrimer-based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number-average molecular weight (Mn) with the monomer-polymer conversion, yielding star polymers with molecular weights of up to M n = 160,000 g mol-1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol-1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1-hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star-shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star-shaped polymeric materials. © 2004 Wiley Periodicals, Inc

    Predominant selection of T cells specific for the glycosylated collagen type II epitope (263–270) in humanized transgenic mice and in rheumatoid arthritis

    No full text
    Rheumatoid arthritis (RA) is associated with certain MHC class II alleles and is characterized by a chronic autoimmune response in the joints. Using transgenic mice expressing human DR4 (DRB1*0401) and human CD4, but lacking endogenous MHC class II, we show that posttranslational glycosylation of type II collagen (CII) influences the level of T cell tolerance to this candidate cartilage-specific autoantigen. In such mice, the expression of human CII resulted in a tolerized murine T cell response to human CII. However, tolerance induction remained incomplete, preferentially deleting responses to the nonmodified CII 263–270 epitope, whereas T cell recognition of a glycosylated variant of this epitope was affected to a lesser degree. A similar dominance of T cell responses to CII-glycopeptides was recorded in a cohort of severely affected RA-patients (n = 14). Thus, RA T cells predominantly recognize the immunodominant CII peptide in its glycosylated form and may explain why previously it has been difficult to detect T cell responses to CII in RA patients
    corecore