789 research outputs found

    University Autonomy and Organizational Change Dynamics

    Get PDF
    In this paper university autonomy is discussed from four different analytical perspectives. First, a discussion is presented of autonomy as conceptualized in the academic literature covering public sector governance in general. Second, the concept of autonomy is deconstructed through discussing its underlying assumptions and by examining the relationship between state authorities and universities. In so doing the paper proposes an institutional approach to the study of autonomy. Third, the way in which autonomy affects organizational design according to centralization, formalization, standardization, legitimization and flexibility is addressed. Fourth, relating to our interpretation of the living autonomy we will discuss how reforms that are aimed at enhancing university autonomy have affected the internal governance structure. The empirical setting consists of a study on flagship universities in eight continental European countries. First findings show tensions as a consequence of the ways in which enhanced institutional autonomy is interpreted, operationalized and used within flagship universities. These tensions are manifested by the nature of the interactions between the traditional academic domain and the emerging executive structure inside these institutions

    Hamiltonian for coupled flux qubits

    Full text link
    An effective Hamiltonian is derived for two coupled three-Josephson-junction (3JJ) qubits. This is not quite trivial, for the customary "free" 3JJ Hamiltonian is written in the limit of zero inductance L. Neglecting the self-flux is already dubious for one qubit when it comes to readout, and becomes untenable when discussing inductive coupling. First, inductance effects are analyzed for a single qubit. For small L, the self-flux is a "fast variable" which can be eliminated adiabatically. However, the commonly used junction phases are_not_ appropriate "slow variables", and instead one introduces degrees of freedom which are decoupled from the loop current to leading order. In the quantum case, the zero-point fluctuations (LC oscillations) in the loop current diverge as L->0. Fortunately, they merely renormalize the Josephson couplings of the effective (two-phase) theory. In the coupled case, the strong zero-point fluctuations render the full (six-phase) wave function significantly entangled in leading order. However, in going to the four-phase theory, this uncontrollable entanglement is integrated out completely, leaving a computationally usable mutual-inductance term of the expected form as the effective interaction.Comment: REVTeX4, 16pp., one figure. N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. Informal note. v2: completely rewritten; correction of final result and major expansion. v3: added numerical verification plus a discussion of Ref. [2

    Long spin relaxation times in wafer scale epitaxial graphene on SiC(0001)

    Get PDF
    We developed an easy, upscalable process to prepare lateral spin-valve devices on epitaxially grown monolayer graphene on SiC(0001) and perform nonlocal spin transport measurements. We observe the longest spin relaxation times tau_S in monolayer graphene, while the spin diffusion coefficient D_S is strongly reduced compared to typical results on exfoliated graphene. The increase of tau_S is probably related to the changed substrate, while the cause for the small value of D_S remains an open question.Comment: 16 pages, 3 figures, 1 tabl

    Linear scaling between momentum and spin scattering in graphene

    Get PDF
    Spin transport in graphene carries the potential of a long spin diffusion length at room temperature. However, extrinsic relaxation processes limit the current experimental values to 1-2 um. We present Hanle spin precession measurements in gated lateral spin valve devices in the low to high (up to 10^13 cm^-2) carrier density range of graphene. A linear scaling between the spin diffusion length and the diffusion coefficient is observed. We measure nearly identical spin- and charge diffusion coefficients indicating that electron-electron interactions are relatively weak and transport is limited by impurity potential scattering. When extrapolated to the maximum carrier mobilities of 2x10^5 cm^2/Vs, our results predict that a considerable increase in the spin diffusion length should be possible

    Localized states influence spin transport in epitaxial graphene

    Get PDF
    We developed a spin transport model for a diffusive channel with coupled localized states that result in an effective increase of spin precession frequencies and a reduction of spin relaxation times in the system. We apply this model to Hanle spin precession measurements obtained on monolayer epitaxial graphene on SiC(0001) (MLEG). Combined with newly performed measurements on quasi-free-standing monolayer epitaxial graphene on SiC(0001) our analysis shows that the different values for the diffusion coefficient measured in charge and spin transport measurements in MLEG and the high values for the spin relaxation time can be explained by the influence of localized states arising from the buffer layer at the interface between the graphene and the SiC surface.Comment: 6 pages, 3 figures, including supplementary materia
    • …
    corecore