163 research outputs found
Machine Learning-Based Signal Degradation Models for Attenuated Underwater Optical Communication OAM Beams
Signal attenuation in underwater communications is a problem that degrades classification performance. Several novel CNN-based (SMART) models are developed to capture the physics of the attenuation process. One model is built and trained using automatic differentiation and another uses the radon cumulative distribution transform. These models are inserted in the classifier training pipeline. It is shown that including these attenuation models in classifier training significantly improves classification performance when the trained model is tested with environmentally attenuated images. The improved classification accuracy will be important in future OAM underwater optical communication applications
Molecular-orbital Studies Via Satellite-free X-ray Fluorescence: Cl-K Absorption and K–Valence-level Emission Spectra of Chlorofluoromethanes
X-ray absorption and emission measurements in the vicinity of the chlorine K edge of the three chlorofluoromethanes have been made using monochromatic synchrotron radiation as the source of excitation. By selectively tuning the incident radiation to just above the Cl 1s single-electron ionization threshold for each molecule, less complex x-ray-emission spectra are obtained. This reduction in complexity is attributed to the elimination of multielectron transitions in the Cl K shell, which commonly produce satellite features in x-ray emission. The resulting satellite-free x-ray-emission spectra exhibit peaks due only to electrons in valence molecular orbitals filling a single Cl 1s vacancy. These simplified emission spectra and the associated x-ray absorption spectra are modeled using straightforward procedures and compared with semiempirical ground-state molecular-orbital calculations. Good agreement is observed between the present experimental and theoretical results for valence-orbital energies and those obtained from ultraviolet photoemission, and between relative radiative yields determined both experimentally and theoretically in this work
Polarized X-ray-emission Studies of Methyl Chloride and the Chlorofluoromethanes
A new technique sensitive to molecular orientation and geometry, and based on measuring the polarization of x-ray emission, has been applied to the Cl-containing molecules methyl chloride (CH3Cl) and the chlorofluoromethanes (CF3Cl, CF2Cl2, and CFCl3) in the gas phase. Upon selective excitation using monochromatic synchrotron radiation in the Cl K-edge (Cl 1s) near-threshold region, polarization-selective x-ray emission studies reveal highly polarized molecular valence x-ray fluorescence for all four molecules. The degree and the orientation of the polarized emission are observed to be sensitive to the incident excitation energy near the Cl Kedge. In some cases, the polarization direction for x-ray emission reverses for small changes in incident excitation energy (a few eV). It is shown that the polarized x-ray emission technique can be used to infer, directly from experiment, symmetries of occupied and unoccupied valence molecular orbitals, an- isotropies in absorption and emission, and orientational and geometrical information. It is suggested that the x-ray polarized-fluorescence phenomenon, reported here for simple molecules, can be used as a new approach to study more complicated systems in a variety of environments
Resonant Inelastic X-ray Scattering of Methyl Chloride at the Chlorine K Edge
We present a combined experimental and theoretical study of isolated CH3Cl molecules using resonant inelastic x-ray scattering (RIXS). The high-resolution spectra allow extraction of information about nuclear dynamics in the core-excited molecule. Polarization-resolved RIXS spectra exhibit linear dichroism in the spin-orbit intensities, a result interpreted as due to chemical environment and singlet-triplet exchange in the molecular core levels. From analysis of the polarization-resolved data, Cl 2px, y and 2pz electronic populations can be determined
Relativistic Effects on Interchannel Coupling in Atomic Photoionization: The Photoelectron Angular Distribution of Xe
Measurements of the photoelectron angular-distribution asymmetry parameter β for Xe 5s photoionization have been performed in the 80–200 eV photon-energy region. The results show a substantial deviation from the nonrelativistic value of β=2 and provide a clear signature of significant relativistic effects in interchannel coupling
Nondipole Resonant X-ray-Raman Spectroscopy: Polarized Inelastic Scattering at the K Edge of Cl2
Experimental and theoretical studies are reported on the inelastic (Raman) scattering of wavelength-selected polarized x rays from the K edge of gas-phase chlorine molecules. The polarized emission spectra exhibit prominent nondipole features consequent of phase variations of the incident and emitted radiation over molecular dimensions, as predicted by the Kramers-Heisenberg scattering formalism. Issues pursuant to the detection of core-hole localization by resonant Raman scattering from homonuclear diatomic molecules are critically examined. [S0031-9007(97)03486-8
Nondipole Effects in the Photoionization of Xe 4d5/2 and 4d3/2: Evidence for Quadrupole Satellites
Measurements of nondipole parameters in spin-orbit-resolved Xe 4d photoionization demonstrate dynamical differences arising from relativistic effects. The experimental data do not agree with relativistic random-phase approximation calculations of single ionization dipole and quadrupole channels. It is suggested that the discrepancy is due to the omission of multiple-excitation quadrupole channels, i.e., quadrupole satellite transitions
Reply to Comment on ‘Nondipole Resonant X-ray-Raman Spectroscopy: Polarized Inelastic Scattering at the K Edge of Cl2,’
Mills et al. Reply: In their Comment on our Letter [1], Gel’mukhanov and Ågren [2] reiterate recent assertions [3] based on their earlier theoretical studies [4]. The primary purpose of their Comment is apparently to refute our stated conclusion that core-excited-state localization/ delocalization mechanisms are irrelevant to interpretations of reported Raman scattering experiments on homonuclear diatomic molecules
In-situ X-ray-absorption Spectroscopy Study of Hydrogen Absorption by Nickel-Magnesium Thin Films
Structural and electronic properties of co-sputtered Ni-Mg thin films with varying Ni to Mg ratio were studied by in-situ x-ray absorption spectroscopy in the Ni L-edge and Mg K-edge regions. Co-deposition of the metals led to increased disorder and decreased coordination around Ni and Mg compared to pure metal films. Exposure of the metallic films to hydrogen resulted in formation of hydrides and increased disorder. The presence of hydrogen as a near neighbor around Mg caused a drastic reduction in the intensities of multiple scattering resonances at higher energies. The optical switching behavior and changes in the x-ray spectra varied with Ni to Mg atomic ratio. Pure Mg films with Pd overlayers were converted to MgH2: the H atoms occupy regular sites as in bulk MgH2. Although optical switching was slow in the absence of Ni, the amount of H2 absorption was large. Incorporation of Ni in Mg films led to an increase in the speed of optical switching but decreased maximum transparency. Significant shifts in the Ni L3 and L2 peaks are consistent with strong interaction with hydrogen in the mixed films
Argon-photoion–Auger-electron Coincidence Measurements Following K-shell Excitation by Synchrotron Radiation
Argon photoion spectra have been obtained for the first time in coincidence with K-LL and K-LM Auger electrons, as a function of photon energy. The simplified charge distributions which result exhibit a much more pronounced photon-energy dependence than do the more complicated noncoincident spectra. In the near-K-threshold region, Rydberg shakeoff of np levels, populated by resonant excitation of K electrons, occurs with significant probability, as do double-Auger processes and recapture of the K photoelectron through postcollision interaction
- …