8,356 research outputs found

    On the single mode approximation in spinor-1 atomic condensate

    Full text link
    We investigate the validity conditions of the single mode approximation (SMA) in spinor-1 atomic condensate when effects due to residual magnetic fields are negligible. For atomic interactions of the ferromagnetic type, the SMA is shown to be exact, with a mode function different from what is commonly used. However, the quantitative deviation is small under current experimental conditions (for 87^{87}Rb atoms). For anti-ferromagnetic interactions, we find that the SMA becomes invalid in general. The differences among the mean field mode functions for the three spin components are shown to depend strongly on the system magnetization. Our results can be important for studies of beyond mean field quantum correlations, such as fragmentation, spin squeezing, and multi-partite entanglement.Comment: Revised, newly found analytic proof adde

    Low temperature spin diffusion in the one-dimensional quantum O(3)O(3) nonlinear σ\sigma-model

    Full text link
    An effective, low temperature, classical model for spin transport in the one-dimensional, gapped, quantum O(3)O(3) non-linear σ\sigma-model is developed. Its correlators are obtained by a mapping to a model solved earlier by Jepsen. We obtain universal functions for the ballistic-to-diffusive crossover and the value of the spin diffusion constant, and these are claimed to be exact at low temperatures. Implications for experiments on one-dimensional insulators with a spin gap are noted.Comment: 4 pages including 3 eps-figures, Revte

    Tunable few electron quantum dots in InAs nanowires

    Full text link
    Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.Comment: 8 pages, 4 figure

    First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory

    Full text link
    The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber (XeTPC) to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon, to discriminate signal from background down to 4.5 keV nuclear recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006 and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross-section of 8.8 x 10^{-44} cm^2 for a WIMP mass of 100 GeV/c^2, and 4.5 x 10^{-44} cm^2 for a WIMP mass of 30 GeV/c^2. This result further constrains predictions of supersymmetric models.Comment: accepted for publication in Phys. Rev. Let

    Disordered Boson Systems: A Perturbative Study

    Full text link
    A hard-core disordered boson system is mapped onto a quantum spin 1/2 XY-model with transverse random fields. It is then generalized to a system of spins with an arbitrary magnitude S and studied through a 1/S expansion. The first order 1/S expansion corresponds to a spin-wave theory. The effect of weak disorder is studied perturbatively within such a first order 1/S scheme. We compute the reduction of the speed of sound and the life time of the Bloch phonons in the regime of weak disorder. Generalizations of the present study to the strong disordered regime are discussed.Comment: 27 pages, revte

    Density Matrix and Renormalization for Classical Lattice Models

    Full text link
    We review the variational principle in the density matrix renormalization group (DMRG) method, which maximizes an approximate partition function within a restricted degrees of freedom; at zero temperature, DMRG mini- mizes the ground state energy. The variational principle is applied to two-dimensional (2D) classical lattice models, where the density matrix is expressed as a product of corner transfer matrices. (CTMs) DMRG related fields and future directions of DMRG are briefly discussed.Comment: 21 pages, Latex, 14 figures in postscript files, Proc. of the 1996 El Escorial Summer School on "Strongly Correlated Magnetic and Superconducting Systems

    A search for light dark matter in XENON10 data

    Full text link
    We report results of a search for light (<10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections \sigma_n>3.5x10^{-42} cm^2, for a dark matter particle mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.Comment: Manuscript identical to v2 (published version) but also contains erratum. Note v3==v2 but without \linenumber

    Variational theory of elastic manifolds with correlated disorder and localization of interacting quantum particles

    Full text link
    We apply the gaussian variational method (GVM) to study the equilibrium statistical mechanics of the two related systems: (i) classical elastic manifolds, such as flux lattices, in presence of columnar disorder correlated along the τ\tau direction (ii) interacting quantum particles in a static random potential. We find localization by disorder, the localized phase being described by a replica symmetry broken solution confined to the mode ω=0\omega=0. For classical systems we compute the correlation function of relative displacements. In d=2+1d=2+1, in the absence of dislocations, the GVM allows to describes the Bose glass phase. Along the columns the displacements saturate at a length l⊥l_{\perp} indicating flux-line localization. Perpendicularly to the columns long range order is destroyed. We find divergent tilt modulus c44=∞c_{44}=\infty and a x∼τ1/2x \sim \tau^{1/2} scaling. Quantum systems are studied using the analytic continuation from imaginary to real time τ→it\tau \to i t. We compute the conductivity and find that it behaves at small frequency as σ(ω)≈ω2\sigma(\omega) \approx \omega^2 in all dimensions (d<4d < 4) for which disorder is relevant. We compute the quantum localization length ξ\xi. In d=1d=1, where the model also describes interacting fermions in a static random potential, we find a delocalization transition and obtain analytically both the low and high frequency behavior of the conductivity for any value of the interaction. We show that the marginality condition appears as the condition to obtain the correct physical behavior. Agreement with renormalization group results is found whenever it can be compared.Comment: 34 pages, REVTeX, no figure
    • …
    corecore