27,854 research outputs found

    A geometric proof of the equality between entanglement and edge spectra

    Full text link
    The bulk-edge correspondence for topological quantum liquids states that the spectrum of the reduced density matrix of a large subregion reproduces the thermal spectrum of a physical edge. This correspondence suggests an intricate connection between ground state entanglement and physical edge dynamics. We give a simple geometric proof of the bulk-edge correspondence for a wide variety of physical systems. Our unified proof relies on geometric techniques available in Lorentz invariant and conformally invariant quantum field theories. These methods were originally developed in part to understand the physics of black holes, and we now apply them to determine the local structure of entanglement in quantum many-body systems.Comment: 7 pages, 3 figure

    Bosonic model with Z3Z_3 fractionalization

    Get PDF
    Bosonic model with unfrustrated hopping and short-range repulsive interaction is constructed that realizes Z3Z_3 fractionalized insulator phase in two dimensions and in zero magnetic field. Such phase is characterized as having gapped charged excitations that carry fractional electrical charge 1/3 and also gapped Z3Z_3 vortices above the topologically ordered ground state.Comment: 7 pages, 3 figure

    Light cone dynamics and reverse Kibble-Zurek mechanism in two-dimensional superfluids following a quantum quench

    Full text link
    We study the dynamics of the relative phase of a bilayer of two-dimensional superfluids after the two superfluids have been decoupled. We find that on short time scales the relative phase shows "light cone" like dynamics and creates a metastable superfluid state, which can be supercritical. We also demonstrate similar light cone dynamics for the transverse field Ising model. On longer time scales the supercritical state relaxes to a disordered state due to dynamical vortex unbinding. This scenario of dynamically suppressed vortex proliferation constitutes a reverse-Kibble-Zurek effect. We study this effect both numerically using truncated Wigner approximation and analytically within a newly suggested time dependent renormalization group approach (RG). In particular, within RG we show that there are two possible fixed points for the real time evolution corresponding to the superfluid and normal steady states. So depending on the initial conditions and the microscopic parameters of the Hamiltonian the system undergoes a non-equilibrium phase transition of the Kosterlitz-Thouless type. The time scales for the vortex unbinding near the critical point are exponentially divergent, similar to the equilibrium case.Comment: 14 pages, 10 figure

    Weak coupling d-wave BCS superconductivity and unpaired electrons in overdoped La_{2-x}Sr_{x}CuO_{4} single crystals

    Get PDF
    The low-temperature specific heat (SH) of overdoped La_{2-x}Sr_{x}CuO_{4} single crystals (0.178=<x=<0.290) has been measured. For the superconducting samples (0.178=<x=<0.238), the derived gap values (without any adjusting parameters) approach closely onto the theoretical prediction \Delta_{0}=2.14k_{B}T_{c} for the weak-coupling d-wave BCS superconductivity. In addition, the residual term \gamma(0) of SH at H=0 increases with x dramatically when beyond x~0.22, and finally evolves into the value of a complete normal metallic state at higher doping levels, indicating growing amount of unpaired electrons. We argue that this large \gamma(0) cannot be simply attributed to the pair breaking induced by the impurity scattering, instead the phase separation is possible.Comment: 6 pages, 6 figures; Contents added; Accepted for publication in Phys. Rev.

    Quantum Hall Ferromagnets

    Full text link
    It is pointed out recently that the ν=1/m\nu=1/m quantum Hall states in bilayer systems behave like easy plane quantum ferromagnets. We study the magnetotransport of these systems using their ``ferromagnetic" properties and a novel spin-charge relation of their excitations. The general transport is a combination of the ususal Hall transport and a time dependent transport with quantizedquantized time average. The latter is due to a phase slippage process in spacetimespacetime and is characterized by two topological constants. (Figures will be provided upon requests).Comment: 4 pages, Revtex, Ohio State Universit

    Vector meson ω\omega-ϕ\phi mixing and their form factors in light-cone quark model

    Full text link
    The vector meson ω\omega-ϕ\phi mixing is studied in two alternative scenarios with different numbers of mixing angles, i.e., the one-mixing-angle scenario and the two-mixing-angle scenario, in both the octect-singlet mixing scheme and the quark flavor mixing scheme. Concerning the reproduction of experimental data and the Q2Q^2 behavior of transition form factors, one-mixing-angle scenario in the quark flavor scheme performs better than that in the octet-singlet scheme, while the two-mixing-angle scenario works well for both mixing schemes. The difference between the two mixing angles in the octet-singlet scheme is bigger than that in the quark flavor scheme.Comment: 16 pages, 7 figures, final version to appear in PR
    corecore