92 research outputs found

    An Observational Limit on the Dwarf Galaxy Population of the Local Group

    Get PDF
    We present the results of an all-sky, deep optical survey for faint Local Group dwarf galaxies. Candidate objects were selected from the second Palomar survey (POSS-II) and ESO/SRC survey plates and follow-up observations performed to determine whether they were indeed overlooked members of the Local Group. Only two galaxies (Antlia and Cetus) were discovered this way out of 206 candidates. Based on internal and external comparisons, we estimate that our visual survey is more than 77% complete for objects larger than one arc minute in size and with a surface brightness greater than an extremely faint limit over the 72% of the sky not obstructed by the Milky Way. Our limit of sensitivity cannot be calculated exactly, but is certainly fainter than 25 magnitudes per square arc second in R, probably 25.5 and possibly approaching 26. We conclude that there are at most one or two Local Group dwarf galaxies fitting our observational criteria still undiscovered in the clear part of the sky, and a roughly a dozen hidden behind the Milky Way. Our work places the "missing satellite problem" on a firm quantitative observational basis. We present detailed data on all our candidates, including surface brightness measurements.Comment: 58 pages in AJ manuscript format; some figures at slightly reduced quality; accepted by the Astronomical Journa

    Optically Thick Radio Cores of Narrow-Waist Bipolar Nebulae

    Full text link
    We report our search for optically thick radio cores in sixteen narrow-waist bipolar nebulae. Optically thick cores are a characteristic signature of collimated ionized winds. Eleven northern nebulae were observed with the Very Large Array (VLA) at 1.3 cm and 0.7 cm, and five southern nebulae were observed with the Australia Telescope Compact Array (ATCA) at 6 cm and 3.6 cm. Two northern objects, 19W32 and M 1-91, and three southern objects, He 2-25, He 2-84 and Mz 3, were found to exhibit a compact radio core with a rising spectrum consistent with an ionized jet. Such jets have been seen in M 2-9 and may be responsible for shaping bipolar structure in planetary nebulae.Comment: 29 pages, accepted for publication in Ap

    Measuring streambed morphology using range imaging

    Get PDF
    River engineeringInnovative field and laboratory instrumentatio

    Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films

    Full text link
    Amorphous chalcogenide thin film deposition can be achieved by a spin-coating technique from proper solutions of the corresponding glass. Films produced in this way exhibit certain grain texture, which is presumably related to the cluster size in solution. This paper deals with the search of such a correlation between grain size of surface morphology of as-deposited spin-coated As33S67 chalcogenide thin films and cluster size of the glass in butylamine solutions. Optical absorption spectroscopy and dynamic light scattering were employed to study optical properties and cluster size distributions in the solutions at various glass concentrations. Atomic force microscopy is used to study the surface morphology of the surface of as-deposited and thermally stabilized spin-coated films. Dynamic light scattering revealed a concentration dependence of cluster size in solution. Spectral-dependence dynamic light scattering studies showed an interesting athermal photo-aggregation effect in the liquid state.Comment: 15 pages, 8 figure

    The Homogeneity of Interstellar Oxygen in the Galactic Disk

    Full text link
    We present an analysis of high resolution HST Space Telescope Imaging Spectrograph (STIS) observations of O I 1356 and H I Lyman-alpha absorption in 36 sight lines that probe a variety of Galactic disk environments and include paths that range over nearly 4 orders of magnitude in f(H_2), over 2 orders of magnitude in mean sight line density, and that extend up to 6.5 kpc in length. Consequently, we have undertaken the study of gas-phase O/H abundance ratio homogeneity using the current sample and previously published Goddard High-Resolution Spectrograph (GHRS) results. Two distinct trends are identified in the 56 sight line sample: an apparent decrease in gas-phase oxygen abundance with increasing mean sight line density and a gap between the mean O/H ratio for sight lines shorter and longer than about 800 pc. The first effect is a smooth transition between two depletion levels associated with large mean density intervals; it is centered near a density of 1.5 cm^-3 and is similar to trends evident in gas-phase abundances of other elements. Paths less dense than the central value exhibit a mean O/H ratio of log_10 (O/H) = -3.41+/-0.01 (or 390+/-10 ppm), which is consistent with averages determined for several long, low-density paths observed by STIS (Andre et al. 2003) and short low-density paths observed by FUSE (Moos et al. 2002). Sight lines of higher mean density exhibit an average O/H value of log_10 (O/H) = -3.55+/-0.02 (284+/-12 ppm). The datapoints for low-density paths are scattered more widely than those for denser sight lines, due to O/H ratios for paths shorter than 800 pc that are generally about 0.10 dex lower than the values for longer ones.Comment: 33 pages, including 8 figures and 4 tables; accepted for publication in ApJ, tentatively in Oct 200

    X-rays and Protostars in the Trifid Nebula

    Get PDF
    The Trifid Nebula is a young HII region recently rediscovered as a "pre-Orion" star forming region, containing protostars undergoing violent mass ejections visible in optical jets as seen in images from the Infrared Space Observatory and the Hubble Space Telescope. We report the first X-ray observations of the Trifid nebula using ROSAT and ASCA. The ROSAT image shows a dozen X-ray sources, with the brightest X-ray source being the O7 star, HD 164492, which provides most of the ionization in the nebula. We also identify 85 T Tauri star and young, massive star candidates from near-infrared colors using the JHKs color-color diagram from the Two Micron All Sky Survey (2MASS). Ten X-ray sources have counterpart near-infrared sources. The 2MASS stars and X-ray sources suggest there are potentially numerous protostars in the young HII region of the Trifid. ASCA moderate resolution spectroscopy of the brightest source shows hard emission up to 10 keV with a clearly detected Fe K line. The best model fit is a two-temperature (T = 1.2x10^6 K and 39x10^6 K) thermal model with additional warm absorbing media. The hotter component has an unusually high temperature for either an O star or an HII region; a typical Galactic HII region could not be the primary source for such hot temperature plasma and the Fe XXV line emission. We suggest that the hotter component originates in either the interaction of the wind with another object (a companion star or a dense region of the nebula) or from flares from deeply embedded young stars.Comment: Accepted in ApJ (Oct, 20 issue, 2001

    Star Formation in the Gulf of Mexico

    Full text link
    We present an optical/infrared study of the dense molecular cloud, L935, dubbed "The Gulf of Mexico", which separates the North America and the Pelican nebulae, and we demonstrate that this area is a very active star forming region. A wide-field imaging study with interference filters has revealed 35 new Herbig-Haro objects in the Gulf of Mexico. A grism survey has identified 41 Halpha emission-line stars, 30 of them new. A small cluster of partly embedded pre-main sequence stars is located around the known LkHalpha 185-189 group of stars, which includes the recently erupting FUor HBC 722.Comment: Submitted to A&A, 14 pages, 18 figure

    The "Twin Jet" Planetary Nebula M2-9

    Full text link
    We present a model for the structure, temporal behavior, and evolutionary status of the bipolar nebula M2-9. According to this model the system consists of an AGB or post-AGB star and a hot white dwarf companion, with an orbital period of about 120 years. The white dwarf has undergone a symbiotic nova eruption about 1200 years ago, followed by a supersoft x-ray source phase. The positional shift of the bright knots in the inner nebular lobes is explained in terms of a revolving ionizing source. We show that the interaction between the slow, AGB star's wind, and a collimated fast wind from the white dwarf clears a path for the ionizing radiation in one direction, while the radiation is attenuated in others. This results in the mirror-symmetric (as opposed to the more common point-symmetric) shift in the knots. We show that M2-9 provides an important evolutionary link among planetary nebulae with binary central stars, symbiotic systems, and supersoft x-ray sources.Comment: 13 pages + 2 figures. Submitted to Ap

    A VLA Search for Water Masers in Six HII Regions: Tracers of Triggered Low-Mass Star Formation

    Full text link
    We present a search for water maser emission at 22 GHz associated with young low-mass protostars in six HII regions -- M16, M20, NGC 2264, NGC 6357, S125, and S140. The survey was conducted with the NRAO Very Large Array from 2000 to 2002. For several of these HII regions, ours are the first high-resolution observations of water masers. We detected 16 water masers: eight in M16, four in M20, three in S140, and one in NGC 2264. All but one of these were previously undetected. No maser emission was detected from NGC 6357 or S125. There are two principle results to our study. (1) The distribution of water masers in M16 and M20 does not appear to be random but instead is concentrated in a layer of compressed gas within a few tenths of a parsec of the ionization front. (2) Significantly fewer masers are seen in the observed fields than expected based on other indications of ongoing star formation, indicating that the maser-exciting lifetime of protostars is much shorter in HII regions than in regions of isolated star formation. Both of these results confirm predictions of a scenario in which star formation is first triggered by shocks driven in advance of ionization fronts, and then truncated approximately 10^5 years later when the region is overrun by the ionization front.Comment: 30 pages, 20 figures, 3 tables. Accepted for publication by ApJ. Full resolution figures and PS and PDF versions with full-res figures available at http://eagle.la.asu.edu/healy/preprints/hhc0

    Distribution and Kinematics of O VI in the Galactic Halo

    Full text link
    FUSE spectra of 100 extragalactic objects are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the approximate velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of thick disk O VI, implying the existence of substantial amounts of hot gas with T ~ 3x10^5 K in the Milky Way halo. Large irregularities in the distribution of the absorbing gas are found to be similar over angular scales extending from less than one to 180 degrees, indicating a considerable amount of small and large scale structure in the gas. The overall distribution of Galactic O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with a scale height of 2.3 kpc, and a 0.25 dex excess of O VI in the northern Galactic polar region. The O VI absorption has a Doppler parameter b = 30 to 99 km/s, with an average value of 60 km/s . Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high latitude objects range from -46 to 82 km/s, with a sample average of 0 km/s and a standard deviation of 21 km/s. O VI associated with the thick disk moves both toward and away from the plane with roughly equal frequency. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. (abbreviated)Comment: 70 pages, single-spaced, PDF format. Bound copies of this manuscript and two accompanying articles are available upon request. Submitted to ApJ
    • 

    corecore