2 research outputs found
Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target
The ablation of solid tin surfaces by an 800-nanometer-wavelength laser is
studied for a pulse length range from 500 fs to 4.5 ps and a fluence range
spanning 0.9 to 22 J/cm^2. The ablation depth and volume are obtained employing
a high-numerical-aperture optical microscope, while the ion yield and energy
distributions are obtained from a set of Faraday cups set up under various
angles. We found a slight increase of the ion yield for an increasing pulse
length, while the ablation depth is slightly decreasing. The ablation volume
remained constant as a function of pulse length. The ablation depth follows a
two-region logarithmic dependence on the fluence, in agreement with the
available literature and theory. In the examined fluence range, the ion yield
angular distribution is sharply peaked along the target normal at low fluences
but rapidly broadens with increasing fluence. The total ionization fraction
increases monotonically with fluence to a 5-6% maximum, which is substantially
lower than the typical ionization fractions obtained with nanosecond-pulse
ablation. The angular distribution of the ions does not depend on the laser
pulse length within the measurement uncertainty. These results are of
particular interest for the possible utilization of fs-ps laser systems in
plasma sources of extreme ultraviolet light for nanolithography.Comment: 8 pages, 7 figure