1,054 research outputs found

    Possibility to sound the atmospheric ozone by a radiosonde equipped with two temperature sensors, sensitive and non-sensitive to the long wave radiation

    Get PDF
    The sensitiveness of white coated thermistor sensors and non-sensitiveness of the gold coated over white thermistor sensors (which have been manufactured by a vacuum evaporation process) to long wave radiation were ascertained by some simple experiments in-room and also by analyses of some results of experimental soundings. From results of analyses on the temperature discrepancies caused by long wave radiation, the possibility to sound the atmospheric ozone partial pressure by a radiosonde equipped with two kinds of sensors, sensitive and non-sensitive to the long wave radiation was suggested, and the test results of the newly developed software for the deduction of ozone partial pressure in upper layers was also shown. However, it was found that the following is the necessary condition to realize the purpose. The sounding should be made by a radiosonde equipped with three sensors, instead of two, one being non-sensitive to the long wave radiation perfectly, and the other two also non-sensitive partially to the downward one, with two different angles of exposure upward. It is essential for the realization of the purpose to get two different values of temperature discrepancies simultaneously observed by the three sensors mentioned above and to avoid the troublesome effects of the upward long wave radiation

    Microscopic Evidence for Evolution of Superconductivity by Effective Carrier Doping in Boron-doped Diamond:11B-NMR study

    Full text link
    We have investigated the superconductivity discovered in boron (B)-doped diamonds by means of 11B-NMR on heteroepitaxially grown (111) and (100) films. 11B-NMR spectra for all of the films are identified to arise from the substitutional B(1) site as single occupation and lower symmetric B(2) site substituted as boron+hydrogen(B+H) complex, respectively. A clear evidence is presented that the effective carriers introduced by B(1) substitution are responsible for the superconductivity, whereas the charge neutral B(2) sites does not offer the carriers effectively. The result is also corroborated by the density of states deduced by 1/T1T measurement, indicating that the evolution of superconductivity is driven by the effective carrier introduced by substitution at B(1) site.Comment: 4 pages, 6 figures, to be published in Phys. Rev. B (Brief report

    Gapless Magnetic and Quasiparticle Excitations due to the Coexistence of Antiferromagnetism and Superconductivity in CeRhIn5_5 : A study of 115^{115}In-NQR under Pressure

    Full text link
    We report systematic measurements of ac-susceptibility, nuclear-quadrupole-resonance spectrum, and nuclear-spin-lattice-relaxation time (T1T_1) on the pressure (PP)- induced heavy-fermion (HF) superconductor CeRhIn5_5. The temperature (TT) dependence of 1/T11/T_1 at PP = 1.6 GPa has revealed that antiferromagnetism (AFM) and superconductivity (SC) coexist microscopically, exhibiting the respective transition at TN=2.8T_N = 2.8 K and TcMFT^{MF}_c = 0.9 K. It is demonstrated that SC does not yield any trace of gap opening in low-lying excitations below Tconset=2T_c^{onset} = 2 K, but TcMF=0.9T_c^{MF} = 0.9 K, followed by a T1TT_1T = const law. These results point to the unconventional characteristics of SC coexisting with AFM. We highlight that both of the results deserve theoretical work on the gapless nature in low-lying excitation spectrum due to the coexistence of AFM and SC and the lack of the mean-field regime below Tconset=2T_c^{onset} = 2 K.Comment: 4pages,5figures,revised versio

    Analysis of Superconductivity in d-p Model on Basis of Perturbation Theory

    Full text link
    We investigate the mass enhancement factor and the superconducting transition temperature in the d-p model for the high-\Tc cuprates. We solve the \'Eliashberg equation using the third-order perturbation theory with respect to the on-site Coulomb repulsion UU. We find that when the energy difference between d-level and p-level is large, the mass enhancement factor becomes large and \Tc tends to be suppressed owing to the difference of the density of state for d-electron at the Fermi level. From another view point, when the energy difference is large, the d-hole number approaches to unity and the electron correlation becomes strong and enhances the effective mass. This behavior for the electron number is the same as that of the f-electron number in the heavy fermion systems. The mass enhancement factor plays an essential role in understanding the difference of \Tc between the LSCO and YBCO systems.Comment: 4pages, 9figures, to be published in J. Phys. Soc. Jp

    Two-Staged Magnetoresistance Driven by Ising-like Spin Sublattice in SrCo6O11

    Full text link
    A two-staged, uniaxial magnetoresistive effect has been discovered in SrCo6O11 having a layered hexagonal structure. Conduction electrons and localized Ising spins are in different sublattices but their interpenetration makes the conduction electrons sensitively pick up the stepwise field-dependence of magnetization. The stepwise field-dependence suggests two competitive interlayer interactions between ferromagnetic Ising-spin layers, i.e., a ferromagnetic nearest-layer interaction and an antiferromagnetic next-nearest-layer interaction. This oxide offers a unique opportunity to study nontrivial interplay between conduction electrons and Ising spins, the coupling of which can be finely controlled by a magnetic field of a few Tesla.Comment: 14 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Enhancement of Superconducting Transition Temperature due to the strong Antiferromagnetic Spin Fluctuations in Non-centrosymmetric Heavy-fermion Superconductor CeIrSi3 :A 29Si-NMR Study under Pressure

    Full text link
    We report a 29Si-NMR study on the pressure-induced superconductivity (SC) in an antiferromagnetic (AFM) heavy-fermion compound CeIrSi3 without inversion symmetry. In the SC state at P=2.7-2.8 GPa, the temperature dependence of the nuclear-spin lattice relaxation rate 1/T_1 below Tc exhibits a T^3 behavior without any coherence peak just below Tc, revealing the presence of line nodes in the SC gap. In the normal state, 1/T_1 follows a \sqrt{T}-like behavior, suggesting that the SC emerges under the non-Fermi liquid state dominated by AFM spin fluctuations enhanced around quantum critical point (QCP). The reason why the maximum Tc in CeIrSi3 is relatively high among the Ce-based heavy-fermion superconductors may be the existence of the strong AFM spin fluctuations. We discuss the comparison with the other Ce-based heavy-fermion superconductors.Comment: 4 pages, 5 figures, To be published in Phys. Rev. Let

    Density of States and NMR Relaxation Rate in Anisotropic Superconductivity with Intersecting Line Nodes

    Full text link
    We show that the density of states in an anisotropic superconductor with intersecting line nodes in the gap function is proportional to Elog(αΔ0/E)E log (\alpha \Delta_0 /E) for ∣E∣<<Δ0|E| << \Delta_0, where Δ0\Delta_0 is the maximum value of the gap function and α\alpha is constant, while it is proportional to EE if the line nodes do not intersect. As a result, a logarithmic correction appears in the temperature dependence of the NMR relaxation rate and the specific heat, which can be observed experimentally. By comparing with those for the heavy fermion superconductors, we can obtain information about the symmetry of the gap function.Comment: 7 pages, 4 PostScript Figures, LaTeX, to appear in J. Phys. Soc. Jp

    Anti-Aquaporin-4 Antibody-Positive Neuromyelitis Optica Presenting with Syndrome of Inappropriate Antidiuretic Hormone Secretion as an Initial Manifestation

    Get PDF
    The distribution of neuromyelitis optica (NMO)-characteristic brain lesions corresponds to sites of high aquaporin-4 (AQP4) expression, and the brainstem and hypothalamus lesions that express high levels of AQP4 protein are relatively characteristic of NMO. The syndrome of inappropriate antidiuretic hormone secretion (SIADH) is one of the important causes of hyponatremia and results from an abnormal production or sustained secretion of antidiuretic hormone (ADH). SIADH has been associated with many clinical states or syndromes, and the hypothalamic-neurohypophyseal system regulates the feedback control system for ADH secretion. We report the case of a 63-year-old man with NMO, whose initial manifestation was hyponatremia caused by SIADH. Retrospective analysis revealed that the serum anti-AQP4 antibody was positive, and an MRI scan showed a unilateral lesion in the hypothalamus. SIADH recovered completely with regression of the hypothalamic lesion. As such, NMO should even be considered in patients who develop SIADH and have no optic nerve or spinal cord lesions but have MRI-documented hypothalamic lesions
    • …
    corecore