5,815 research outputs found
Gating of high-mobility two-dimensional electron gases in GaAs/AlGaAs heterostructures
We investigate high-mobility two-dimensional electron gases in AlGaAs
heterostructures by employing Schottky-gate-dependent measurements of the
samples' electron density and mobility. Surprisingly, we find that two
different sample configurations can be set in situ with mobilities diering by a
factor of more than two in a wide range of densities. This observation is
discussed in view of charge redistributions between the doping layers and is
relevant for the design of future gateable high-mobility electron gases
An evolutionary perspective on the kinome of malaria parasites
Malaria parasites belong to an ancient lineage that diverged very early from the main branch of eukaryotes. The approximately 90-member plasmodial kinome includes a majority of eukaryotic protein kinases that clearly cluster within the AGC, CMGC, TKL, CaMK and CK1 groups found in yeast, plants and mammals, testifying to the ancient ancestry of these families. However, several hundred millions years of independent evolution, and the specific pressures brought about by first a photosynthetic and then a parasitic lifestyle, led to the emergence of unique features in the plasmodial kinome. These include taxon-restricted kinase families, and unique peculiarities of individual enzymes even when they have homologues in other eukaryotes. Here, we merge essential aspects of all three malaria-related communications that were presented at the Evolution of Protein Phosphorylation meeting, and propose an integrated discussion of the specific features of the parasite's kinome and phosphoproteome
Relative mass distributions of neutron-rich thermally fissile nuclei within statistical model
We study the fission yield of recently predicted thermally fissile
neutron-rich uranium and thorium nuclei using statistical model. The level
density parameters needed for the study are evaluated from the excitation
energies of temperature dependent relativistic mean field formalism. The
excitation energy and the level density parameter for a given temperature are
employed in the convolution integral method to obtain the probability of the
particular fragmentation. As representative case, we present the results for
the binary fission yield of 250 U and 254 Th. The relative yields are presented
for three different temperatures T = 1, 2 and 3 MeV.Comment: Comments are welcome. arXiv admin note: text overlap with
arXiv:1612.0166
Three-fold way to extinction in populations of cyclically competing species
Species extinction occurs regularly and unavoidably in ecological systems.
The time scales for extinction can broadly vary and inform on the ecosystem's
stability. We study the spatio-temporal extinction dynamics of a paradigmatic
population model where three species exhibit cyclic competition. The cyclic
dynamics reflects the non-equilibrium nature of the species interactions. While
previous work focusses on the coarsening process as a mechanism that drives the
system to extinction, we found that unexpectedly the dynamics to extinction is
much richer. We observed three different types of dynamics. In addition to
coarsening, in the evolutionary relevant limit of large times, oscillating
traveling waves and heteroclinic orbits play a dominant role. The weight of the
different processes depends on the degree of mixing and the system size. By
analytical arguments and extensive numerical simulations we provide the full
characteristics of scenarios leading to extinction in one of the most
surprising models of ecology
Precedence-type Test based on Progressively Censored Samples
In this paper, we introduce precedence-type tests for testing the hypothesis that two distribution functions are equal, which is an extension of the precedence life-test rst proposed by Nelson (1963), when the two samples are progressively Type-II censored. The null distributions of the test statistics are derived. Critical values for some combination of sample sizes and censoring schemes for the proposed tests are presented. Then, we present the exact power functions under the Lehmann alternative, and compare the exact power as well as simulated power (under location-shift) of the proposed precedence test based on nonparametric estimates of CDF with other precedence-type tests. We then examine the power properties of the proposed test procedures through Monte Carlo simulations. Two examples are presented to illustrate all the test procedures discussed here. Finally, we make some concluding remarks.Precedence test; Product-limit estimator; Type-II progressive censoring; Life-testing; level of significance; power; Lehmann alternative; Monte Carlo simulations
Galaxy Formation with local photoionisation feedback I. Methods
We present a first study of the effect of local photoionising radiation on
gas cooling in smoothed particle hydrodynamics simulations of galaxy formation.
We explore the combined effect of ionising radiation from young and old stellar
populations. The method computes the effect of multiple radiative sources using
the same tree algorithm used for gravity, so it is computationally efficient
and well resolved. The method foregoes calculating absorption and scattering in
favour of a constant escape fraction for young stars to keep the calculation
efficient enough to simulate the entire evolution of a galaxy in a cosmological
context to the present day. This allows us to quantify the effect of the local
photoionisation feedback through the whole history of a galaxy`s formation. The
simulation of a Milky Way like galaxy using the local photoionisation model
forms ~ 40 % less stars than a simulation that only includes a standard uniform
background UV field. The local photoionisation model decreases star formation
by increasing the cooling time of the gas in the halo and increasing the
equilibrium temperature of dense gas in the disc. Coupling the local radiation
field to gas cooling from the halo provides a preventive feedback mechanism
which keeps the central disc light and produces slowly rising rotation curves
without resorting to extreme feedback mechanisms. These preliminary results
indicate that the effect of local photoionising sources is significant and
should not be ignored in models of galaxy formation.Comment: Accepted for Publication in MNRAS, 13 pages, 13 figure
Cellular expression and crystal structure of the murine cytomegalovirus MHC-Iv glycoprotein, m153
Mouse cytomegalovirus (MCMV), a β-herpesvirus that establishes latent and persistent infections in mice, is a valuable model for studying complex virus-host interactions. MCMV encodes the m145 family of putative immunoevasins with predicted MHC-I structure. Functions attributed to some family members include downregulation of host MHC-I (m152) and NKG2D ligands (m145, m152, m155) and interaction with inhibitory or activating NK receptors (m157). We present the cellular, biochemical and structural characterization of m153, which is a heavily glycosylated homodimer, that does not require β2m or peptide, and is expressed at the surface of MCMV-infected cells. Its 2.4 Å crystal structure confirms that this compact molecule preserves an MHC-I-like fold and reveals a novel mode of dimerization, confirmed by site-directed mutagenesis, and a distinctive disulfide-stabilized extended amino terminus. The structure provides a useful framework for comparative analysis of the divergent members of the m145 family
- …
