91 research outputs found

    Reconstructing 3D x-ray CT images of polymer gel dosimeters using the zero-scan method

    Get PDF
    In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ā€˜zero-scanā€™ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scannerā€™s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels

    A hybrid radiation detector for simultaneous spatial and temporal dosimetry

    Get PDF
    In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation

    Calibration of radiochromic film for electron radiotherapy dosimetry

    No full text
    Radiochromic film has the potential to provide accurate in vivo measurements of the skin dose received by radiotherapy patients; this is especially important for superficial treatments such as electron radiotherapy. This study examines the use of Gafchromic EBT2 radiochromic film for dosimetry of megavoltage electron radiotherapy beams. 80 pieces of film are irradiated to different doses, using 6, 9, 12, 16 and 20 MeV electron beams delivered using a medical linear accelerator, in order to derive a dose-response relationship for each of these standard electron beam energies. These five calibration relationships are then evaluated and compared. When red-channel data are used to calibrate the film, the use of a single calibration curve obtained at one energy to evaluate dose from films irradiated to doses above 50 cGy using the other electron beam energies introduces a maximum inaccuracy of 5%. If red-and blue-channel data are used, the additional inaccuracy arising from using one calibration relationship to evaluate dose from films irradiated to doses above 50 cGy using the other electron beam energies was found to increase to 20%. This study establishes that red-channel data calibrations made at standard megavoltage electron energies can be used interchangeably, with an acceptable level of uncertainty

    Using narrow beam profiles to quantify focal spot size, for accurate Monte Carlo simulations of SRS/SRT systems

    No full text
    This study investigates the variation of photon field penumbra shape with initial electron beam diameter, for very narrow beams. A Varian Millenium MLC (Varian Medical Systems, Palo Alto, USA) and a Brainlab m3 microMLC (Brainlab AB. Feldkirchen, Germany) were used, with one Varian iX linear accelerator, to produce fields that were (nominally) 0.20 cm across. Dose profiles for these fields were measured using radiochromic film and compared with the results of simulations completed using BEAMnrc and DOSXYZnrc, where the initial electron beam was set to FWHM = 0.02, 0.10, 0.12, 0.15, 0.20 and 0.50 cm. Increasing the electron-beam FWHM produced increasing occlusion of the photon source by the closely spaced collimator leaves and resulted in blurring of the simulated profile widths from 0.26 to 0.64 cm, for the MLC, from 0.12 to 0.43 cm, for the microMLC. Comparison with measurement data suggested that the electron spot size in the clinical linear accelerator was between FWHM = 0.10 and 0.15 cm, encompassing the result of our previous output-factor based work, which identified a FWHM of 0.12. Investigation of narrow-beam penumbra variation has been found to be a useful procedure, with results varying noticeably with linear accelerator spot size and allowing FWHM estimates obtained using other methods to be verified

    Evaluation of a Gafchromic EBT2 film dosimetry system for radiotherapy quality assurance

    No full text
    This study examines the dosimetric accuracy of Gafchromic EBT2 model radiochromic film for use in radiotherapy quality assurance. In this study, film was scanned using an Epson Perfection V700 flatbed scanner in transmission mode at 75 DPI with the subsequent analysis performed using the red and blue colour channels and ImageJ software. Results of this study suggest that the conversion of film optical density to measured dose should, at present, utilise red channel data only, without application of a blue channel correction to the data. For the batch of film examined here, film uniformity and reproducibility appear to have improved compared with published results using older batches. The orientation of the film on the scanner and the side of the film facing the light source were found to have substantial effects on results. Based on the results of this study, it is possible to recommend the use of EBT2 film in routine quality assurance testing for radiotherapy, in situations where a dose uncertainty of up to 2.8% is acceptable

    Application of retrospective data analysis to clinical protocol design: Can the potential benefits of breath-hold techniques for breast radiotherapy be assessed without testing on patients?

    No full text
    The advantages, in terms of heart dose sparing, resulting from using a breath-hold technique when treating supine left breast radiotherapy patients are widely accepted, and increasing numbers of radiotherapy departments are implementing breath-hold techniques. However, due to differences in patient setup and treatment planning protocols between radiotherapy departments, it is important to assess the benefits of using a breath-hold technique within each department, before or during implementation. This study investigated the use of retrospective analysis of past patient treatment plans, as a means to identify the potential for breath-hold techniques to benefit patients. In-house ā€œTreatment and Dose Assessorā€ code was used to complete a bulk retrospective evaluation of dose-volume metrics for 708 supine and 13 prone breast and chest wall radiotherapy treatments, that were planned using the same clinical protocols, which did not utilise a breath hold technique. For supine patients, results showed statistically significant differences between heart doses from left and right breast treatment plans, in the absence of significant differences between lung doses from left and right breast treatment plans, confirming the potential benefit of using a breath-hold technique for supine left breast radiotherapy patients. Fewer than 1% of the right breast treatment plans showed heart doses high enough to suggest a possible benefit from using a breath-hold technique. Approximately 50% of the prone left breast treatment plans included very low heart doses without intervention, and may therefore have shown no noticeable dosimetric benefit from the use of a breath hold. This study demonstrated the extent of information that can be obtained using retrospective data analysis, before or instead of obtaining multiple CT images of patients and completing a process of dual planning and prospective dose evaluation.</p

    Dosimetric effects of a high-density spinal implant

    Get PDF
    In this study, a treatment plan for a spinal lesion, with all beams transmitted though a titanium vertebral reconstruction implant, was used to investigate the potential effect of a high-density implant on a three-dimensional dose distribution for a radiotherapy treatment. The BEAMnrc/DOSXYZnrc and MCDTK Monte Carlo codes were used to simulate the treatment using both a simplified, recltilinear model and a detailed model incorporating the full complexity of the patient anatomy and treatment plan. The resulting Monte Carlo dose distributions showed that the commercial treatment planning system failed to accurately predict both the depletion of dose downstream of the implant and the increase in scattered dose adjacent to the implant. Overall, the dosimetric effect of the implant was underestimated by the commercial treatment planning system and overestimated by the simplified Monte Carlo model. The value of performing detailed Monte Carlo calculations, using the full patient and treatment geometry, was demonstrated
    • ā€¦
    corecore