183 research outputs found

    Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer

    Get PDF
    Vascular endothelial growth factor-C (VEGF-C) has been implicated in lymphangiogenesis, the process of new lymphatics formation. The present study investigated VEGF-C mRNA expression in invasive cervical cancer tissue. Additionally, the association of VEGF-C mRNA with clinicopathological features was examined. VEGF-C mRNA expression was assessed by reverse transcription-polymerase chain reaction using β-action as an internal control. 75 patients presenting with invasive cervical cancer were included in the trial. VEGF-C mRNA expression was markedly higher in tumours in which pelvic lymph node metastasis was diagnosed by magnetic resonance (MR) imaging (P = 0.002). 53 patients displaying stage Ib–IIb cervical cancer underwent radical hysterectomy and pelvic lymphadenectomy. VEGF-C expression was significantly higher in tumours exhibiting deep stromal invasion, pelvic lymph node metastasis and lymph-vascular space involvement (P = 0.016, P = 0.006 and P = 0.036, respectively). Multivariate analysis revealed VEGF-C mRNA expression to be the sole independent factor influencing pelvic lymph node metastasis. Subjects demonstrating VEGF-C mRNA expression displayed significantly poorer prognoses than those lacking VEGF-C mRNA expression (P = 0.049). These findings provide evidence supporting the involvement of VEGF-C expression in the promotion of lymph node metastasis in cervical cancer. Furthermore, examination of VEGF-C expression in biopsy specimens may be beneficial in the prediction of pelvic lymph node metastasis. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Chronic recurrent Gorham-Stout syndrome with cutaneous involvement

    Get PDF
    Type IV osteolysis or Gorham-Stout syndrome is a rare condition characterized by recurrent vascular tumors that disrupt normal anatomical architecture. Gorham-Stout syndrome is most commonly associated with the skeletal system with resulting replacement of bone with scar tissue following tumor regression. The loss of entire bones has given Gorham-Stout syndrome the moniker vanishing bone disease. Natural progression of Gorham-Stout syndrome is characterized by spontaneous disease resolution. However, rare variants of recurrent, progressive, and/or systemic disease have been reported. We present a patient with a history of recurrent Gorham- Stout disease refractory to all treatment options considered. In addition to skeletal disease, our patient had soft tissue and cutaneous involvement, thus reflecting the more aggressive disease variant. Previous surgical attempts to control disease had been ineffective and the patient was referred to us for radiation therapy. Treatment with external beam radiation therapy resulted in good local control and symptom palliation, but full disease resolution was never accomplished. In addition to presentation of this patient, a review of the literature on etiological hypotheses and past/future treatment options was conducted and is included

    Elevated expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymphangiomas are neoplasias of childhood. Their etiology is unknown and a causal therapy does not exist. The recent discovery of highly specific markers for lymphatic endothelial cells (LECs) has permitted their isolation and characterization, but expression levels and stability of molecular markers on LECs from healthy and lymphangioma tissues have not been studied yet. We addressed this problem by profiling LECs from normal dermis and two children suffering from lymphangioma, and also compared them with blood endothelial cells (BECs) from umbilical vein, aorta and myometrial microvessels.</p> <p>Methods</p> <p>Lymphangioma tissue samples were obtained from two young patients suffering from lymphangioma in the axillary and upper arm region. Initially isolated with anti-CD31 (PECAM-1) antibodies, the cells were separated by FACS sorting and magnetic beads using anti-podoplanin and/or LYVE-1 antibodies. Characterization was performed by FACS analysis, immunofluorescence staining, ELISA and micro-array gene analysis.</p> <p>Results</p> <p>LECs from foreskin and lymphangioma had an almost identical pattern of lymphendothelial markers such as podoplanin, Prox1, reelin, cMaf and integrin-α1 and -α9. However, LYVE-1 was down-regulated and VEGFR-2 and R-3 were up-regulated in lymphangiomas. Prox1 was constantly expressed in LECs but not in any of the BECs.</p> <p>Conclusion</p> <p>LECs from different sources express slightly variable molecular markers, but can always be distinguished from BECs by their Prox1 expression. High levels of VEGFR-3 and -2 seem to contribute to the etiology of lymphangiomas.</p

    CD34+/M-cadherin+ Bone Marrow Progenitor Cells Promote Arteriogenesis in Ischemic Hindlimbs of ApoE−/− Mice

    Get PDF
    BACKGROUND: Cell-based therapy shows promise in treating peripheral arterial disease (PAD); however, the optimal cell type and long-term efficacy are unknown. In this study, we identified a novel subpopulation of adult progenitor cells positive for CD34 and M-cadherin (CD34⁺/M-cad⁺ BMCs) in mouse and human bone marrow. We also examined the long-lasting therapeutic efficacy of mouse CD34⁺/M-cad⁺ BMCs in restoring blood flow and promoting vascularization in an atherosclerotic mouse model of PAD. METHODS AND FINDINGS: Colony-forming cell assays and flow cytometry analysis showed that CD34⁺/M-cad⁺ BMCs have hematopoietic progenitor properties. When delivered intra-arterially into the ischemic hindlimbs of ApoE⁻/⁻ mice, CD34⁺/M-cad⁺ BMCs alleviated ischemia and significantly improved blood flow compared with CD34⁺/M-cad⁻ BMCs, CD34⁻/M-cad⁺ BMCs, or unselected BMCs. Significantly more arterioles were seen in CD34⁺/M-cad⁺ cell-treated limbs than in any other treatment group 60 days after cell therapy. Furthermore, histologic assessment and morphometric analyses of hindlimbs treated with GFP⁺ CD34⁺/M-cad⁺ cells showed that injected cells incorporated into solid tissue structures at 21 days. Confocal microscopic examination of GFP⁺ CD34⁺/M-cad⁺ cell-treated ischemic legs followed by immunostaining indicated the vascular differentiation of CD34⁺/M-cad⁺ progenitor cells. A cytokine antibody array revealed that CD34⁺/M-cad⁺ cell-conditioned medium contained higher levels of cytokines in a unique pattern, including bFGF, CRG-2, EGF, Flt-3 ligand, IGF-1, SDF-1, and VEGFR-3, than did CD34⁺/M-cad⁻ cell-conditioned medium. The proangiogenic cytokines secreted by CD34⁺/M-cad⁺ cells induced oxygen- and nutrient-depleted endothelial cell sprouting significantly better than CD34⁺/M-cad⁻ cells during hypoxia. CONCLUSION: CD34⁺/M-cad⁺ BMCs represent a new progenitor cell type that effectively alleviates hindlimb ischemia in ApoE⁻/⁻ mice by consistently improving blood flow and promoting arteriogenesis. Additionally, CD34⁺/M-cad⁺ BMCs contribute to microvascular remodeling by differentiating into vascular cells and releasing proangiogenic cytokines and growth factors
    corecore