1,312 research outputs found

    Sterile neutrino dark matter in warped extra dimensions

    Full text link
    We consider a (long-lived) sterile neutrino dark matter scenario in a five dimensional (5D) warped extra dimension model where the fields can live in the bulk, which is partly motivated from the absence of the absolutely stable particles in a simple Randall-Sundrum model. The dominant production of the sterile neutrino can come from the decay of the radion (the scalar field representing the brane separation) around the electroweak scale. The suppressions of the 4D parameters due to the warp factor and the small wave function overlaps in the extra dimension help alleviate the exceeding fine-tunings typical for a sterile neutrino dark matter scenario in a 4D setup.Comment: Typos corrected and references adde

    The Decay of the Inflaton in No-scale Supergravity

    Get PDF
    We study the decay of the inflaton in no-scale supergravity and show that decay due to the gravitational interactions through supergravity effects is highly suppressed relative to the case in minimal supergravity or models with a generic Kahler potential. We also show that decay to gravitinos is suppressed. We demonstrate that decay and sufficient reheating are possible with the introduction of a non-trivial gauge kinetic term. This channel may be dominant in no-scale supergravity, yet yields a re-heating temperature which is low enough to avoid the gravitino problem while high enough for Big Bang Nucleosynthesis and baryogenesis.Comment: Added the footnote in the conclusion section which discusses the constrains on the explicit inflaton couplings to the matter fields via non-renormalizable operators. To appear in JCA

    A Stochastic Model of Fragmentation in Dynamic Storage Allocation

    Get PDF
    We study a model of dynamic storage allocation in which requests for single units of memory arrive in a Poisson stream at rate λ and are accommodated by the first available location found in a linear scan of memory. Immediately after this first-fit assignment, an occupied location commences an exponential delay with rate parameter μ, after which the location again becomes available. The set of occupied locations (identified by their numbers) at time t forms a random subset St of {1,2, . . .}. The extent of the fragmentation in St, i.e. the alternating holes and occupied regions of memory, is measured by (St) - |St |. In equilibrium, the number of occupied locations, |S|, is known to be Poisson distributed with mean ρ = λ/μ. We obtain an explicit formula for the stationary distribution of max (S), the last occupied location, and by independent arguments we show that (E max (S) - E|S|)/E|S| → 0 as the traffic intensity ρ → ∞. Moreover, we verify numerically that for any ρ the expected number of wasted locations in equilibrium is never more than 1/3 the expected number of occupied locations. Our model applies to studies of fragmentation in paged computer systems, and to containerization problems in industrial storage applications. Finally, our model can be regarded as a simple concrete model of interacting particles [Adv. Math., 5 (1970), pp. 246–290]

    Orbital-dependent modifications of electronic structure across magneto-structural transition in BaFe2As2

    Full text link
    Laser angle-resolved photoemission spectroscopy (ARPES) is employed to investigate the temperature (T) dependence of the electronic structure in BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic transformation in Fermi surface (FS) shape across TN is observed, as expected by first-principles band calculations. Polarization-dependent ARPES and band calculations consistently indicate that the observed FSs at kz ~ pi in the low-T antiferromagnetic (AF) state are dominated by the Fe3dzx orbital, leading to the two-fold electronic structure. These results indicate that magneto-structural transition in BaFe2As2 accompanies orbital-dependent modifications in the electronic structure.Comment: 13 pages, 4 figures. accepted by Physical Review Letter

    Synthesis of magnesium ZIF-8 from Mg(BH₄)₂.

    Get PDF
    Porous Mg(2-methyl imidazolate)2 (Mg-ZIF-8) was synthesised from Mg(BH4)2 as a precursor under an Ar atmosphere. It possesses an uncommon tetrahedral Mg(2+)-N coordination geometry that is stabilised by the formation of a framework, and it exhibits a Brunauer-Emmett-Teller surface area greater than 1800 m(2) g(-1)

    New D-term chaotic inflation in supergravity and leptogenesis

    Full text link
    We present a new model of D-term dominated chaotic inflation in supergravity. The F-flat direction present in this model is lifted by the dominant D-term, which leads to chaotic inflation and subsequent reheating. No cosmic string is formed after inflation because the U(1) gauge symmetry is broken during inflation. The leptogenesis scenario via the inflaton decay in our D-term chaotic inflation scenario is also discussed.Comment: 14 pages, no figure, to appear in Phys. Rev.

    The Earliest Optical Observations of GRB 030329

    Full text link
    We present the earliest optical imaging observations of GRB 030329 related to SN 2003dh. The burst was detected by the HETE-2 satellite at 2003 March 29, 11:37:14.67 UT. Our wide-field monitoring started 97 minutes before the trigger and the burst position was continuously observed. We found no precursor or contemporaneous flare brighter than V=5.1V=5.1 (V=5.5V=5.5) in 32 s (64 s) timescale between 10:00 and 13:00 UT. Follow-up time series photometries started at 12:51:39 UT (75 s after position notice through the GCN) and continued for more than 5 hours. The afterglow was Rc=12.35±0.07Rc= 12.35\pm0.07 at t=74t=74 min after burst. Its fading between 1.2 and 6.3 hours is well characterized by a single power-law of the form f(mJy)=(1.99±0.02(statistic)±0.14(systematic))×(t/1day)0.890±0.006(statistic)±0.010(systematic)f{\rm(mJy)} = (1.99\pm0.02{\rm (statistic)}\pm0.14{\rm (systematic)}) \times (t/1 {\rm day})^{-0.890\pm 0.006 {\rm (statistic)}\pm 0.010 {\rm (systematic)}} in RcRc-band. No significant flux variation was detected and upper limits are derived as (Δf/f)RMS=35(\Delta f/f)_{\rm RMS} = 3-5% in minutes to hours timescales and (Δf/f)RMS=355(\Delta f/f)_{\rm RMS} = 35-5% in seconds to minutes timescales. Such a featureless lightcurve is explained by the smooth distribution of circumburst medium. Another explanation is that the optical band was above the synchrotron cooling frequency where emergent flux is insensitive to the ambient density contrasts. Extrapolation of the afterglow lightcurve to the burst epoch excludes the presence of an additional flare component at t<10t<10 minutes as seen in GRB 990123 and GRB 021211.Comment: ApJL, in pres

    Positrons in Cosmic Rays from Dark Matter Annihilations for Uplifted Higgs Regions in MSSM

    Full text link
    We point out that there are regions in the MSSM parameter space which successfully provide a dark matter (DM) annihilation explanation for observed positron excess (e.g. PAMELA), while still remaining in agreement with all other data sets. Such regions (e.g. the uplifted Higgs region) can realize an enhanced neutralino DM annihilation dominantly into leptons via a Breit-Wigner resonance through the CP-odd Higgs channel. Such regions can give the proper thermal relic DM abundance, and the DM annihilation products are compatible with current antiproton and gamma ray observations. This scenario can succeed without introducing any additional degrees of freedom beyond those already in the MSSM.Comment: 11 pages, 9 figure

    Chondrosarcoma and Peroxisome Proliferator-Activated Receptor

    Get PDF
    Induction of differentiation and apoptosis in cancer cells by ligands of PPARγ is a novel therapeutic approach to malignant tumors. Chondrosarcoma (malignant cartilage tumor) and OUMS-27 cells (cell line established from grade III human chondrosarcoma) express PPARγ. PPARγ ligands inhibited cell proliferation in a dose-dependent manner, and induced apoptosis of OUMS-27. The higher-grade chondrosarcoma expressed a higher amount of antiapoptotic Bcl-xL in vivo. The treatment of OUMS-27 by 15d-PGJ2, the most potent endogenous ligand for PPARγ, downregulated expression of Bcl-xL and induced transient upregulation of proapoptotic Bax, which could accelerate cytochrome c release from mitochondria to the cytosol, followed by induction of caspase-dependent apoptosis. 15d-PGJ2 induced the expression of CDK inhibitor p21 protein in human chondrosarcoma cells, which appears to be involved in the mechanism of inhibition of cell proliferation. These findings suggest that targeted therapy with PPARγ ligands could be a novel strategy against chondrosarcoma
    corecore