7,312 research outputs found

    Precedence-type Test based on Progressively Censored Samples

    Get PDF
    In this paper, we introduce precedence-type tests for testing the hypothesis that two distribution functions are equal, which is an extension of the precedence life-test rst proposed by Nelson (1963), when the two samples are progressively Type-II censored. The null distributions of the test statistics are derived. Critical values for some combination of sample sizes and censoring schemes for the proposed tests are presented. Then, we present the exact power functions under the Lehmann alternative, and compare the exact power as well as simulated power (under location-shift) of the proposed precedence test based on nonparametric estimates of CDF with other precedence-type tests. We then examine the power properties of the proposed test procedures through Monte Carlo simulations. Two examples are presented to illustrate all the test procedures discussed here. Finally, we make some concluding remarks.Precedence test; Product-limit estimator; Type-II progressive censoring; Life-testing; level of significance; power; Lehmann alternative; Monte Carlo simulations

    Potential Explosive Device on a Commuter Train: What drives train drivers to deviate from the security procedure?

    Get PDF
    Explosives pose a major threat to urban metro rail systems. Train drivers are therefore expected to regularly perform security procedures in response to reports of suspicious items on the train. This study was conducted to develop a multi-factorial account of deviation from one such security procedure by train drivers. By analysing data from focus group interviews with 30 train drivers, observation in a rail simulator, actual cab rides, and training material four major themes emerged to explain why drivers may deliberately deviate from following normative procedures designed by their managers. This included perceived pressure from safety and service goals, stress and fatigue during peak hours of operation, and workload created by security tasks. The results are organised in a succinct model that draws a link between driversā€™ perceived pressure from multiple goals, and the changing driving conditions in which they perform. The study proposes ways for managers of urban commuter rail networks to understand the pressures that their drivers face in performing security tasks that are not part of their conventional job profile. The findings can inform changes in training methods, encourage drivers to discuss their reasons for deliberate rule violation, and support the design of security procedures more likely to be implemented

    Water soluble fluorescent carbon nanodots from biosource for cells imaging

    Get PDF
    Carbon nanodots (CNDs) derived from a green precursor, kidney beans, was synthesized with high yield via a facile pyrolysis technique. The CND material was easily modified through simple oxidative treatment with nitric acid, leading to a high density ā€œself-passivatedā€ water soluble form (wsCNDs). The synthesized wsCNDs have been extensively characterized by using various microscopic and spectroscopic techniques and were crystalline in nature. The highly carboxylated wsCNDs possessed tunable-photoluminescence emission behavior throughout the visible region of the spectrum, demonstrating their application for multicolor cellular imaging of HeLa cells. The tunable-photoluminescence properties of ā€œself-passivatedā€ wsCNDs make them a promising candidate as a probe in biological cell-imaging applications.Kumud Malika Tripathi, Tuan Sang Tran, Tran Thanh Tung, Dusan Losic and TaeYoung Ki

    Investigation of ion induced bending mechanism for nanostructures

    Get PDF
    Ion induced bending is a promising controlled technique for manipulating nanoscale structures. However, the underlying mechanism of the process is not well understood. In this letter, we report a detailed study of the bending mechanism of Si nanowires (NWs) under Ga+ irradiation. The microstructural changes in the NW due to ion beam irradiation are studied and molecular dynamics simulations are used to explore the ionā€“NW interaction processes. The simulation results are compared with the microstructural studies of the NW. The investigations inform a generic understanding of the bending process in crystalline materials, which we suggest to be feasible as a versatile manipulation and integration technique in nanotechnology

    Nanoscale quantum dot infrared sensors with photonic crystal cavity

    Get PDF
    We report high performance infrared sensors that are based on intersubband transitions in nanoscale self-assembled quantum dots combined with a microcavity resonator made with a high-index-contrast two-dimensional photonic crystal. The addition of the photonic crystal cavity increases the photocurrent, conversion efficiency, and the signal to noise ratio (represented by the specific detectivity D*) by more than an order of magnitude. The conversion efficiency of the detector at Vb=ā€“2.6 V increased from 7.5% for the control sample to 95% in the PhC detector. In principle, these photonic crystal resonators are technology agnostic and can be directly integrated into the manufacturing of present day infrared sensors using existing lithographic tools in the fabrication facility

    Effect of Dual Ion Beam Irradiation (Helium and Deuterium) on Tungstenā€“Tantalum Alloys Under Fusion Relevant Conditions

    Get PDF
    The selection of tungsten (W) as a divertor material in ITER is based on its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown W to undergo severe morphology changes in fusion-like conditions. Recent literature suggests alloying W with other ductile refractory metals, viz. tantalum (Ta) may resolve some of these issues. These results provide further motivation for investigating Wā€“Ta alloys as a plasma-facing component (PFC) for ITER and future DEMO reactors. Specifically, how these alloy materials respond to simultaneous He+ and D+ ion irradiation, and what is the effect on the surface morphology when exposed to fusion relevant conditions. In the present study, the surface morphology changes are investigated in several Wā€“Ta targets (pure W, W-1%Ta, W-3%Ta, and W-5% Ta) due to simultaneous He+ and D+ ion irradiations. This comprehensive work allows for deeper understanding of the synergistic effects induced by dual ion irradiation on W and Wā€“Ta alloy surface morphology. Pure W and Wā€“Ta alloys were irradiated simultaneously by 100 eV He+ and/or D+ ions at various mixture ratios (100% He+, 60% D+ + 40% He+, 90% D+ + 10% He+ ions and 100% D+ ions), having a total constant He fluence of 6 Ɨ 1024 ion māˆ’2, and at a target temperature of 1223 K. This work shows that slight changes in materials composition and He/D content have significant impact on surface morphology evolution and performance. While both the pure W and Wā€“Ta alloys exhibit very damaged surfaces under the He+ only irradiations, there is a clear suppression of the surface morphology evolution as the ratio of D+/He+ ions is increased
    • ā€¦
    corecore