1,783 research outputs found

    Force Field Study of Dinitrogen Tetroxide

    Get PDF

    Hot Core, Outflows and Magnetic Fields in W43-MM1 (G30.79 FIR 10)

    Get PDF
    We present submillimeter spectral line and dust continuum polarization observations of a remarkable hot core and multiple outflows in the high-mass star-forming region W43-MM1 (G30.79 FIR 10), obtained using the Submillimeter Array (SMA). A temperature of \sim 400 K is estimated for the hot-core using CH3_3CN (J=19-18) lines, with detections of 11 K-ladder components. The high temperature and the mass estimates for the outflows indicate high-mass star-formation. The continuum polarization pattern shows an ordered distribution, and its orientation over the main outflow appears aligned to the outflow. The derived magnetic field indicates slightly super-critical conditions. While the magnetic and outflow energies are comparable, the B-field orientation appears to have changed from parsec scales to \sim 0.1 pc scales during the core/star-formation process.Comment: accepted, ApJ Letter

    Massive and low-mass protostars in massive "starless" cores

    Get PDF
    The infrared dark clouds (IRDCs) G11.11-0.12 and G28.34++0.06 are two of the best-studied IRDCs in our Galaxy. These two clouds host clumps at different stages of evolution, including a massive dense clump in both clouds that is dark even at 70 and 100μ\mum. Such seemingly quiescent massive dense clumps have been speculated to harbor cores that are precursors of high-mass stars and clusters. We observed these two "prestellar" regions at 1mm with the Submillimeter Array (SMA) with the aim of characterizing the nature of such cores. We show that the clumps fragment into several low- to high-mass cores within the filamentary structure of the enveloping cloud. However, while the overall physical properties of the clump may indicate a starless phase, we find that both regions host multiple outflows. The most massive core though 70 μ\mum dark in both clumps is clearly associated with compact outflows. Such low-luminosity, massive cores are potentially the earliest stage in the evolution of a massive protostar. We also identify several outflow features distributed in the large environment around the most massive core. We infer that these outflows are being powered by young, low-mass protostars whose core mass is below our detection limit. These findings suggest that low-mass protostars have already formed or are coevally formed at the earliest phase of high-mass star formation.Comment: in print at A&

    Seeing-Induced Errors in Solar Doppler Velocity Measurements

    Full text link
    Imaging systems based on a narrow-band tunable filter are used to obtain Doppler velocity maps of solar features. These velocity maps are created by taking the difference between the blue- and red-wing intensity images of a chosen spectral line. This method has the inherent assumption that these two images are obtained under identical conditions. With the dynamical nature of the solar features as well as the Earth's atmosphere, systematic errors can be introduced in such measurements. In this paper, a quantitative estimate of the errors introduced due to variable seeing conditions for ground-based observations is simulated and compared with real observational data for identifying their reliability. It is shown, under such conditions, that there is a strong cross-talk from the total intensity to the velocity estimates. These spurious velocities are larger in magnitude for the umbral regions compared to the penumbra or quiet-sun regions surrounding the sunspots. The variable seeing can induce spurious velocities up to about 1 km/s It is also shown that adaptive optics, in general, helps in minimising this effect.Comment: 14 page

    Caught in the act: The Onset of massive star formation

    Full text link
    Combining mid-infrared data from the SPITZER Space Telescope with cold gas and dust emission observations from the Plateau de Bure Interferometer, we characterize the Infrared Dark Cloud IRDC18223-3 at high spatial resolution. The millimeter continuum data reveal a massive `184Msun gas core with a projected size of ~28000AU that has no associated protostellar mid-infrared counterpart. However, the detection of 4.5mum emission at the edge of the core indicates early outflow activity, which is supported by broad CO and CS spectral line-wing emission. Moreover, systematically increasing N2H+(1-0) line-width toward the mm core center can be interpreted as additional evidence for early star formation. Furthermore, the N2H+(1-0) line emission reveals a less massive secondary core which could be in an evolutionary stage prior to any star formation activity.Comment: Accepted for the Astrophysical Journal Letter
    corecore