198 research outputs found

    Verification and intercomparison of reactive transport codes to describe root-uptake

    Get PDF
    Several mathematical models have been developed to simulate processes and interactions in the plant rhizosphere. Most of these models are based on a rather simplified description of the soil chemistry and interactions of plant roots in the rhizosphere. In particular the feedback loops between exudation, water and solute uptake are mostly not considered, although their importance in the bioavailability of mineral elements for plants has been demonstrated. The aim of this work was to evaluate three existing coupled speciation-transport tools to model rhizosphere processes. In the field of hydrogeochemistry, such␣computational tools have been developed to␣describe acid-base and redox reactions, complexation and ion exchange, adsorption and precipitation of chemical species in soils and aquifers using thermodynamic and kinetic relationships. We implemented and tested a simple rhizosphere model with three geochemical computational tools (ORCHESTRA, MIN3P, and PHREEQC). The first step was an accuracy analysis of the different solution strategies by comparing the numerical results to the analytical solution of solute uptake (K or Ca) by a single cylindrical root. All models are able to reproduce the concentration profiles as well as the uptake flux. The relative error of the simulated concentration profile decreases with increasing distance from the root. The uptake flux was simulated for all codes with less than 5% error for K and less than 0.4% for Ca. The strength of the codes presented in this paper is that they can also be used to investigate more complex and coupled biogeochemical processes in rhizosphere models. This is shown exemplarily with simulations involving both exudation and uptake and the simultaneous uptake of solute and wate

    Congenital diaphragmatic hernia in the preterm infant.

    Get PDF
    BACKGROUND: Congenital diaphragmatic hernia (CDH) remains a significant cause of death in newborns. With advances in neonatal critical care and ventilation strategies, survival in the term infant now exceeds 80% in some centers. Although prematurity is a significant risk factor for morbidity and mortality in most neonatal diseases, its associated risk with infants with CDH has been described poorly. We sought to determine the impact of prematurity on survival using data from the Congenital Diaphragmatic Hernia Registry (CDHR). METHODS: Prospectively collected data from live-born infants with CDH were analyzed from the CDHR from January 1995 to July 2009. Preterm infants were defined as \u3c37 weeks estimated gestational age at birth. Univariate and multivariate logistic regression analysis were\u3eperformed. RESULTS: During the study period, 5,069 infants with CDH were entered in the registry. Of the 5,022 infants with gestational age data, there were 3,895 term infants (77.6%) and 1,127 preterm infants (22.4%). Overall survival was 68.7%. A higher percentage of term infants were treated with extracorporeal membrane oxygenation (ECMO) (33% term vs 25.6% preterm). Preterm infants had a greater percentage of chromosomal abnormalities (4% term vs 8.1% preterm) and major cardiac anomalies (6.1% term vs 11.8% preterm). Also, a significantly higher percentage of term infants had repair of the hernia (86.3% term vs 69.4% preterm). Survival for infants that underwent repair was high in both groups (84.6% term vs 77.2% preterm). Survival decreased with decreasing gestational age (73.1% term vs 53.5% preterm). The odds ratio (OR) for death among preterm infants adjusted for patch repair, ECMO, chromosomal abnormalities, and major cardiac anomalies was OR 1.68 (95% confidence interval [CI], 1.34-2.11). CONCLUSION: Although outcomes for preterm infants are clearly worse than in the term infant, more than 50% of preterm infants still survived. Preterm infants with CDH remain a high-risk group. Although ECMO may be of limited value in the extremely premature infant with CDH, most preterm infants that live to undergo repair will survive. Prematurity should not be an independent factor in the treatment strategies of infants with CDH

    Hypothalamic Reactive Oxygen Species Are Required for Insulin-Induced Food Intake Inhibition: An NADPH Oxidase–Dependent Mechanism

    Get PDF
    1939-327X (Electronic) Journal Article Research Support, Non-U.S. Gov'tOBJECTIVE: Insulin plays an important role in the hypothalamic control of energy balance, especially by reducing food intake. Emerging data point to a pivotal role of reactive oxygen species (ROS) in energy homeostasis regulation, but their involvement in the anorexigenic effect of insulin is unknown. Furthermore, ROS signal derived from NADPH oxidase activation is required for physiological insulin effects in peripheral cells. In this study, we investigated the involvement of hypothalamic ROS and NADPH oxidase in the feeding behavior regulation by insulin. RESEARCH DESIGN AND METHODS: We first measured hypothalamic ROS levels and food intake after acute intracerebroventricular injection of insulin. Second, effect of pretreatment with a ROS scavenger or an NADPH oxidase inhibitor was evaluated. Third, we examined the consequences of two nutritional conditions of central insulin unresponsiveness (fasting or short-term high-fat diet) on the ability of insulin to modify ROS level and food intake. RESULTS: In normal chow-fed mice, insulin inhibited food intake. At the same dose, insulin rapidly and transiently increased hypothalamic ROS levels by 36%. The pharmacological suppression of this insulin-stimulated ROS elevation, either by antioxidant or by an NADPH oxidase inhibitor, abolished the anorexigenic effect of insulin. Finally, in fasted and short-term high-fat diet-fed mice, insulin did not promote elevation of ROS level and food intake inhibition, likely because of an increase in hypothalamic diet-induced antioxidant defense systems. CONCLUSIONS: A hypothalamic ROS increase through NADPH oxidase is required for the anorexigenic effect of insulin

    Enhanced Hypothalamic Glucose Sensing in Obesity: Alteration of Redox Signaling

    Get PDF
    1939-327X (Electronic) Journal articleObjective : Recent data demonstrate that glucose sensing in different tissues is initiated by an intracellular redox-signaling pathway in physiological conditions. However, the relevance of such a mechanism in metabolic disease is not known. The aim of the present study was to determine whether brain-glucose hypersensitivity present in obese Zucker rat is related to an alteration in redox signaling. Research design and Methods: Brain glucose sensing alteration was investigated in vivo through the evaluation of electrical activity in arcuate nucleus, changes in ROS levels, and hypothalamic glucose-induced insulin secretion. In basal conditions, modifications of redox state and mitochondrial function were assessed through oxidized glutathione, glutathione peroxidase, manganese superoxide dismutase, aconitase activities and mitochondrial respiration. Results : Hypothalamic hypersensitivity to glucose was characterized by enhanced electrical activity of the arcuate nucleus and increased insulin secretion at a low glucose concentration, which does not produce such an effect in normal rats. It was associated with 1) increased ROS levels in response to this low glucose load, 2) constitutive oxidized environment coupled with lower antioxidant enzyme activity at both the cellular and mitochondrial level, and 3) over-expression of several mitochondrial subunits of the respiratory chain coupled with a global dysfunction in mitochondrial activity. Moreover, pharmacological restoration of the glutathione hypothalamic redox state by reduced-glutathione infusion in the third ventricle fully reversed the cerebral hypersensitivity to glucose. Conclusions : Altogether, these data demonstrate that obese Zucker rats' impaired hypothalamic regulation in terms of glucose sensing is linked to an abnormal redox signaling, which originates from mitochondria dysfunction

    The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia

    Get PDF
    yesRecent studies portend a rising global spread and adaptation of human- or healthcare- associated pathogens. Here, we analyse an international collection of the emerging, multi-drug-resistant, opportunistic pathogen Stenotrophomonas maltophilia from 22 countries to infer population structure and clonality at a global level. We show that the S. maltophilia complex is divided into 23 monophyletic lineages, most of which harbour strains of all degrees of human virulence. Lineage Sm6 comprises the highest rate of human-associated strains, linked to key virulence and resistance genes. Transmission analysis identifies potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals
    corecore