6,571 research outputs found

    Star formation history of Canis Major OB1 - II. A bimodal X-ray population revealed by XMM-Newton

    Full text link
    The Canis Major OB1 Association has an intriguing scenario of star formation, especially in the Canis Major R1 (CMa R1) region traditionally assigned to a reflection nebula, but in reality an ionized region. This work is focused on the young stellar population associated to CMa R1, for which our previous results from ROSAT, optical and near-infrared data had revealed two stellar groups with different ages, suggesting a possible mixing of populations originated from distinct star-formation episodes. The X-ray data allow the detected sources to be characterized according to hardness ratios, light curves and spectra. Estimates of mass and age were obtained from the 2MASS catalogue, and used to define a complete subsample of stellar counterparts, for statistical purposes. A catalogue of 387 XMM-Newton sources is provided, 78% being confirmed as members or probable members of the CMa R1 association. Flares were observed for 13 sources, and the spectra of 21 bright sources could be fitted by a thermal plasma model. Mean values of fits parameters were used to estimate X-ray luminosities. We found a minimum value of log(LX_X[erg/s]) = 29.43, indicating that our sample of low-mass stars (M_\star \leq 0.5 M_\odot), being faint X-ray emitters, is incomplete. Among the 250 objects selected as our complete subsample (defining our best sample), 171 are found to the East of the cloud, near Z CMa and dense molecular gas, 50% of them being young ( 10 Myr). The opposite happens to the West, near GU CMa, in areas lacking molecular gas: among 79 objects, 30% are young and 50% are older. These findings confirm that a first episode of distributed star formation occurred in the whole studied region ~10 Myr ago and dispersed the molecular gas, while a second, localized episode (< 5 Myr) took place in the regions where molecular gas is still present.Comment: 38 pages, 21 figures, accepted for A&

    Fast computation of MadGraph amplitudes on graphics processing unit (GPU)

    Full text link
    Continuing our previous studies on QED and QCD processes, we use the graphics processing unit (GPU) for fast calculations of helicity amplitudes for general Standard Model (SM) processes. Additional HEGET codes to handle all SM interactions are introduced, as well assthe program MG2CUDA that converts arbitrary MadGraph generated HELAS amplitudess(FORTRAN) into HEGET codes in CUDA. We test all the codes by comparing amplitudes and cross sections for multi-jet srocesses at the LHC associated with production of single and double weak bosonss a top-quark pair, Higgs boson plus a weak boson or a top-quark pair, and multisle Higgs bosons via weak-boson fusion, where all the heavy particles are allowes to decay into light quarks and leptons with full spin correlations. All the helicity amplitudes computed by HEGET are found to agree with those comsuted by HELAS within the expected numerical accuracy, and the cross sections obsained by gBASES, a GPU version of the Monte Carlo integration program, agree wish those obtained by BASES (FORTRAN), as well as those obtained by MadGraph. The performance of GPU was over a factor of 10 faster than CPU for all processes except those with the highest number of jets.Comment: 37 pages, 12 figure

    Weak boson fusion production of supersymmetric particles at the LHC

    Full text link
    We present a complete calculation of weak boson fusion production of colorless supersymmetric particles at the LHC, using the new matrix element generator SUSY-MadGraph. The cross sections are small, generally at the attobarn level, with a few notable exceptions which might provide additional supersymmetric parameter measurements. We discuss in detail how to consistently define supersymmetric weak couplings to preserve unitarity of weak gauge boson scattering amplitudes to fermions, and derive sum rules for weak supersymmetric couplings.Comment: 24 p., 3 fig., 9 tab., published in PRD; numbers in Table IV corrected to those with kinematic cuts cite

    Calculation of HELAS amplitudes for QCD processes using graphics processing unit (GPU)

    Get PDF
    We use a graphics processing unit (GPU) for fast calculations of helicity amplitudes of quark and gluon scattering processes in massless QCD. New HEGET ({\bf H}ELAS {\bf E}valuation with {\bf G}PU {\bf E}nhanced {\bf T}echnology) codes for gluon self-interactions are introduced, and a C++ program to convert the MadGraph generated FORTRAN codes into HEGET codes in CUDA (a C-platform for general purpose computing on GPU) is created. Because of the proliferation of the number of Feynman diagrams and the number of independent color amplitudes, the maximum number of final state jets we can evaluate on a GPU is limited to 4 for pure gluon processes (gg4ggg\to 4g), or 5 for processes with one or more quark lines such as qqˉ5gq\bar{q}\to 5g and qqqq+3gqq\to qq+3g. Compared with the usual CPU-based programs, we obtain 60-100 times better performance on the GPU, except for 5-jet production processes and the gg4ggg\to 4g processes for which the GPU gain over the CPU is about 20

    X-Shooter spectroscopy of young stellar objects - VI - HI line decrements

    Get PDF
    Hydrogen recombination emission lines commonly observed in accreting young stellar objects represent a powerful tracer for the gas conditions in the circumstellar structures. Here we perform a study of the HI decrements and line profiles, from the Balmer and Paschen lines detected in the X-Shooter spectra of a homogeneous sample of 36 T Tauri stars in Lupus, the accretion and stellar properties of which were already derived in a previous work. We aim to obtain information on the gas physical conditions to derive a consistent picture of the HI emission mechanisms in pre-main sequence low-mass stars. We have empirically classified the sources based on their HI line profiles and decrements. We identified four Balmer decrement types (classified as 1, 2, 3, and 4) and three Paschen decrement types (A, B, and C), characterised by different shapes. We first discussed the connection between the decrement types and the source properties and then compared the observed decrements with predictions from recently published local line excitation models. One third of the objects show lines with narrow symmetric profiles, and present similar Balmer and Paschen decrements (straight decrements, types 2 and A). Lines in these sources are consistent with optically thin emission from gas with hydrogen densities of order 10^9 cm^-3 and 5000<T<15000 K. These objects are associated with low mass accretion rates. Type 4 (L-shaped) Balmer and type B Paschen decrements are found in conjunction with very wide line profiles and are characteristic of strong accretors, with optically thick emission from high-density gas (log n_H > 11 cm^-3). Type 1 (curved) Balmer decrements are observed only in three sub-luminous sources viewed edge-on, so we speculate that these are actually reddened type 2 decrements. About 20% of the objects present type 3 Balmer decrements (bumpy), which cannot be reproduced with current models.Comment: 29 pages, accepted by A&

    A study of top polarization in single-top production at the LHC

    Get PDF
    This paper complements the study of single top production at the LHC aiming to estimate the sensitivity of different observables to the magnitude of the effective couplings. In a previous paper the dominant WW-gluon fusion mechanism was considered, while here we extend the analysis to the subdominant (10% with our set of experimental cuts) s-channel process. In order to distinguish left from right effective couplings it is required to consider polarized cross-sections and/or include mbm_b effects. The spin of the top is accessible only indirectly by measuring the angular distribution of its decay products. We show that the presence of effective right-handed couplings implies necessarily that the top is not in a pure spin state. We discuss to what extent quantum interference terms can be neglected in the measurement and therefore simply multiply production and decay probabilities clasically. The coarsening involved in the measurement process makes this possible. We determine for each process the optimal spin basis where theoretical errors are minimized and, finally, discuss the sensitivity in the s-channel to the effective right-handed coupling. The results presented here are all analytical and include mbm_b corrections. They are derived within the narrow width approximation for the top.Comment: 30 pages, 14 figure
    corecore