341 research outputs found
The structural properties of the multi-layer graphene/4H-SiC(000-1) system as determined by Surface X-ray Diffraction
We present a structural analysis of the multi-layer graphene-4HSiC(000-1})
system using Surface X-Ray Reflectivity. We show for the first time that
graphene films grown on the C-terminated (000-1}) surface have a
graphene-substrate bond length that is very short (0.162nm). The measured
distance rules out a weak Van der Waals interaction to the substrate and
instead indicates a strong bond between the first graphene layer and the bulk
as predicted by ab-initio calculations. The measurements also indicate that
multi-layer graphene grows in a near turbostratic mode on this surface. This
result may explain the lack of a broken graphene symmetry inferred from
conduction measurements on this system [C. Berger et al., Science 312, 1191
(2006)].Comment: 9 pages with 6 figure
Recommended from our members
Peak fitting applied to low-resolution enrichment measurements
Materials accounting at bulk processing facilities that handle low enriched uranium consists primarily of weight and uranium enrichment measurements. Most low enriched uranium processing facilities draw separate materials balances for each enrichment handled at the facility. The enrichment measurement determines the isotopic abundance of the {sup 235}U, thereby determining the proper strata for the item, while the weight measurement generates the primary accounting value for the item. Enrichment measurements using the passive gamma radiation from uranium were developed for use in US facilities a few decades ago. In the US, the use of low-resolution detectors was favored because they cost less, are lighter and more robust, and don`t require the use of liquid nitrogen. When these techniques were exported to Europe, however, difficulties were encountered. Two of the possible root causes were discovered to be inaccurate knowledge of the container wall thickness and higher levels of minor isotopes of uranium introduced by the use of reactor returns in the enrichment plants. the minor isotopes cause an increase in the Compton continuum under the 185.7 keV assay peak and the observance of interfering 238.6 keV gamma rays. The solution selected to address these problems was to rely on the slower, more costly, high-resolution gamma ray detectors when the low-resolution method failed. Recently, these gamma ray based enrichment measurement techniques have been applied to Russian origin material. The presence of interfering gamma radiation from minor isotopes was confirmed. However, with the advent of fast portable computers, it is now possible to apply more sophisticated analysis techniques to the low-resolution data in the field. Explicit corrections for Compton background, gamma rays from {sup 236}U daughters, and the attenuation caused by thick containers can be part of the least squares fitting routine. Preliminary results from field measurements in Kazakhstan will be discussed
Localization of Dirac electrons by Moire patterns in graphene bilayers
We study the electronic structure of two Dirac electron gazes coupled by a
periodic Hamiltonian such as it appears in rotated graphene bilayers. Ab initio
and tight-binding approaches are combined and show that the spatially periodic
coupling between the two Dirac electron gazes can renormalize strongly their
velocity. We investigate in particular small angles of rotation and show that
the velocity tends to zero in this limit. The localization is confirmed by an
analysis of the eigenstates which are localized essentially in the AA zones of
the Moire patterns.Comment: 4 pages, 5 figure
Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene
Nonlinear couplings between photons and electrons in new materials give rise
to a wealth of interesting nonlinear phenomena. This includes frequency mixing,
optical rectification or nonlinear current generation, which are of particular
interest for generating radiation in spectral regions that are difficult to
access, such as the terahertz gap. Owing to its specific linear dispersion and
high electron mobility at room temperature, graphene is particularly attractive
for realizing strong nonlinear effects. However, since graphene is a
centrosymmetric material, second-order nonlinearities a priori cancel, which
imposes to rely on less attractive third-order nonlinearities. It was
nevertheless recently demonstrated that dc-second-order nonlinear currents as
well as ultrafast ac-currents can be generated in graphene under optical
excitation. The asymmetry is introduced by the excitation at oblique incidence,
resulting in the transfer of photon momentum to the electron system, known as
the photon drag effect. Here, we show broadband coherent terahertz emission,
ranging from about 0.1-4 THz, in epitaxial graphene under femtosecond optical
excitation, induced by a dynamical photon drag current. We demonstrate that, in
contrast to most optical processes in graphene, the next-nearest-neighbor
couplings as well as the distinct electron-hole dynamics are of paramount
importance in this effect. Our results indicate that dynamical photon drag
effect can provide emission up to 60 THz opening new routes for the generation
of ultra-broadband terahertz pulses at room temperature.Comment: 17 pages, 3 figure
30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes
We report that 30-inch scale multiple roll-to-roll transfer and wet chemical
doping considerably enhance the electrical properties of the graphene films
grown on roll-type Cu substrates by chemical vapor deposition. The resulting
graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 %
transparency which is superior to commercial transparent electrodes such as
indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as
low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum
Hall effect, indicating the high-quality of these graphene films. As a
practical application, we also fabricated a touch screen panel device based on
the graphene transparent electrodes, showing extraordinary mechanical and
electrical performances
Simulation of dimensionality effects in thermal transport
The discovery of nanostructures and the development of growth and fabrication
techniques of one- and two-dimensional materials provide the possibility to
probe experimentally heat transport in low-dimensional systems. Nevertheless
measuring the thermal conductivity of these systems is extremely challenging
and subject to large uncertainties, thus hindering the chance for a direct
comparison between experiments and statistical physics models. Atomistic
simulations of realistic nanostructures provide the ideal bridge between
abstract models and experiments. After briefly introducing the state of the art
of heat transport measurement in nanostructures, and numerical techniques to
simulate realistic systems at atomistic level, we review the contribution of
lattice dynamics and molecular dynamics simulation to understanding nanoscale
thermal transport in systems with reduced dimensionality. We focus on the
effect of dimensionality in determining the phononic properties of carbon and
semiconducting nanostructures, specifically considering the cases of carbon
nanotubes, graphene and of silicon nanowires and ultra-thin membranes,
underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture
Notes in Physics volume "Thermal transport in low dimensions: from
statistical physics to nanoscale heat transfer" (S. Lepri ed.
- …