30 research outputs found
Flux through a hole from a shaken granular medium
We have measured the flux of grains from a hole in the bottom of a shaken
container of grains. We find that the peak velocity of the vibration, vmax,
controls the flux, i.e., the flux is nearly independent of the frequency and
acceleration amplitude for a given value of vmax. The flux decreases with
increasing peak velocity and then becomes almost constant for the largest
values of vmax. The data at low peak velocity can be quantitatively described
by a simple model, but the crossover to nearly constant flux at larger peak
velocity suggests a regime in which the granular density near the container
bottom is independent of the energy input to the system.Comment: 14 pages, 4 figures. to appear in Physical Review
Numerical study of the thermoelectric power factor in ultra-thin Si nanowires
Low dimensional structures have demonstrated improved thermoelectric (TE)
performance because of a drastic reduction in their thermal conductivity,
{\kappa}l. This has been observed for a variety of materials, even for
traditionally poor thermoelectrics such as silicon. Other than the reduction in
{\kappa}l, further improvements in the TE figure of merit ZT could potentially
originate from the thermoelectric power factor. In this work, we couple the
ballistic (Landauer) and diffusive linearized Boltzmann electron transport
theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB)
electronic structure model. We calculate the room temperature electrical
conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires
(NWs). We describe the numerical formulation of coupling TB to those transport
formalisms, the approximations involved, and explain the differences in the
conclusions obtained from each model. We investigate the effects of cross
section size, transport orientation and confinement orientation, and the
influence of the different scattering mechanisms. We show that such methodology
can provide robust results for structures including thousands of atoms in the
simulation domain and extending to length scales beyond 10nm, and point towards
insightful design directions using the length scale and geometry as a design
degree of freedom. We find that the effect of low dimensionality on the
thermoelectric power factor of Si NWs can be observed at diameters below ~7nm,
and that quantum confinement and different transport orientations offer the
possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201
Recent advances on thermoelectric materials
By converting waste heat into electricity through the thermoelectric power of
solids without producing greenhouse gas emissions, thermoelectric generators
could be an important part of the solution to today's energy challenge. There
has been a resurgence in the search for new materials for advanced
thermoelectric energy conversion applications. In this paper, we will review
recent efforts on improving thermoelectric efficiency. Particularly, several
novel proof-of-principle approaches such as phonon disorder in
phonon-glasselectron crystals, low dimensionality in nanostructured materials
and charge-spin-orbital degeneracy in strongly correlated systems on
thermoelectric performance will be discussed.Comment: 12 pages, 12 figure
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
Fabrication of extreme aspect ratio wires within photonic crystal fibers
We have recently fabricated continuous semiconducting micro and nanowires within the empty spaces of highly ordered microstructured (e.g., photonic crystal or holey) optical fibers (MOFs). These systems contain the highest aspect ratio semiconductor micro- and nanowires yet produced by any method: centimeters long and ~100 nm in diameter. These structures combine the flexible light guiding capabilities of an optical fiber with the electronic and optical functionalities of semiconductors and have many potential applications for in-fiber sensing, including in-fiber detection, modulation, and generation of light