92 research outputs found
Spectrum of the Dirac Operator and Multigrid Algorithm with Dynamical Staggered Fermions
Complete spectra of the staggered Dirac operator \Dirac are determined in
quenched four-dimensional gauge fields, and also in the presence of
dynamical fermions.
Periodic as well as antiperiodic boundary conditions are used.
An attempt is made to relate the performance of multigrid (MG) and conjugate
gradient (CG) algorithms for propagators with the distribution of the
eigenvalues of~\Dirac.
The convergence of the CG algorithm is determined only by the condition
number~ and by the lattice size.
Since~'s do not vary significantly when quarks become dynamic,
CG convergence in unquenched fields can be predicted from quenched
simulations.
On the other hand, MG convergence is not affected by~ but depends on
the spectrum in a more subtle way.Comment: 19 pages, 8 figures, HUB-IEP-94/12 and KL-TH 19/94; comes as a
uuencoded tar-compressed .ps-fil
Effective Field Theories
Effective field theories encode the predictions of a quantum field theory at
low energy. The effective theory has a fairly low ultraviolet cutoff. As a
result, loop corrections are small, at least if the effective action contains a
term which is quadratic in the fields, and physical predictions can be read
straight from the effective Lagrangean.
Methods will be discussed how to compute an effective low energy action from
a given fundamental action, either analytically or numerically, or by a
combination of both methods. Basically,the idea is to integrate out the high
frequency components of fields. This requires the choice of a "blockspin",i.e.
the specification of a low frequency field as a function of the fundamental
fields. These blockspins will be the fields of the effective field theory. The
blockspin need not be a field of the same type as one of the fundamental
fields, and it may be composite. Special features of blockspins in nonabelian
gauge theories will be discussed in some detail.
In analytical work and in multigrid updating schemes one needs interpolation
kernels \A from coarse to fine grid in addition to the averaging kernels
which determines the blockspin. A neural net strategy for finding optimal
kernels is presented.
Numerical methods are applicable to obtain actions of effective theories on
lattices of finite volume. The constraint effective potential) is of particular
interest. In a Higgs model it yields the free energy, considered as a function
of a gauge covariant magnetization. Its shape determines the phase structure of
the theory. Its loop expansion with and without gauge fields can be used to
determine finite size corrections to numerical data.Comment: 45 pages, 9 figs., preprint DESY 92-070 (figs. 3-9 added in ps
format
Theoretical Analysis of Acceptance Rates in Multigrid Monte Carlo
We analyze the kinematics of multigrid Monte Carlo algorithms by
investigating acceptance rates for nonlocal Metropolis updates. With the help
of a simple criterion we can decide whether or not a multigrid algorithm will
have a chance to overcome critial slowing down for a given model. Our method is
introduced in the context of spin models. A multigrid Monte Carlo procedure for
nonabelian lattice gauge theory is described, and its kinematics is analyzed in
detail.Comment: 7 pages, no figures, (talk at LATTICE 92 in Amsterdam
Long-term survival and transmission of INI1-mutation via nonpenetrant males in a family with rhabdoid tumour predisposition syndrome
Rhabdoid tumour predisposition syndrome (RTPS) is a rare syndrome caused by inheritance of a mutated INI1 gene for which only two multigeneration families have been reported. To further characterise the genotype and phenotype of RTPS, we present a third family in which at least three cousins developed an atypical teratoid/rhabdoid tumour (AT/RT) at a young age. Two of these patients showed unusual long survival, and one of these developed an intracranial meningioma and a myoepithelioma of the lip in adulthood. Mutation analysis of INI1 revealed a germline G>A mutation in the donor splice site of exon 4 (c.500+1G>A) in the patients and in their unaffected fathers. This mutation prevents normal splicing and concomitantly generates a stop codon, resulting in nonsense-mediated mRNA decay. Biallelic inactivation of INI1 in the tumours, except for the meningioma, was confirmed by absence of nuclear INI1-protein staining. The myoepithelioma of one of the patients carried an identical somatic rearrangement in the NF2 gene as the AT/RT, indicating that both tumours originated from a common precursor cell. In conclusion, this study demonstrates for the first time transmission of a germline INI1-mutation in a RTPS family via nonpenetrant males, long-term survival of two members of this family with an AT/RT, and involvement of INI1 in the pathogenesis of myoepithelioma
Secondary meningioma in a long-term survivor of atypical teratoid/rhabdoid tumour with a germline INI1 mutation
OBJECTIVE: We report on a patient who developed a meningioma more than two decades after removal at a young age of an atypical teratoid/rhabdoid tumour (AT/RT), which was due to a germline INI1 mutation, and radio- and chemotherapy. MATERIALS AND METHODS: We present genetic evidence that the meningioma is not a recurrence or metastasis of the AT/RT and not due to the INI1 mutation, but is a radiation-induced tumour. CONCLUSION: This is the first case illustrating that improved survival of young patients with an AT/RT after aggressive treatment may be gained at the cost of an increased risk for the development of radiation-induced, non-INI1-related tumours
Quenched Hadrons using Wilson and O(a)-Improved Fermion Actions at beta=6.2
We present the first study of the light hadron spectrum and decay constants
for quenched QCD using an O(a)-improved nearest-neighbour Wilson fermion action
at \beta=6.2. We compare the results with those obtained using the standard
Wilson fermion action, on the same set of 18 gauge field configurations of a
24^3 times 48 lattice. For pseudoscalar meson masses in the range 330-800 MeV,
we find no significant difference between the results for the two actions. The
scales obtained from the string tension and mesonic sector are consistent, but
differ from that derived from baryon masses. The ratio of the pseudoscalar
decay constant to the vector meson mass is roughly independent of quark mass as
observed experimentally, and in approximate agreement with the measured value.Comment: 11 page
Multi-Grid Monte Carlo. IV. One-Dimensional -Symmetric Nonlinear -Model
We study the dynamic critical behavior of the multi-grid Monte Carlo (MGMC)
algorithm with piecewise-constant interpolation and a W-cycle, applied to the
one-dimensional -symmetric nonlinear -model [= principal
chiral model], on lattices from to . Our data for the
integrated autocorrelation time are well fit by a
logarithmic growth. We have no idea why the critical slowing-down is not
completely eliminated.Comment: 377866 bytes Postscript, 16 pages, includes figure
Multi-Grid Monte Carlo via Embedding. II. Two-Dimensional Principal Chiral Model
We carry out a high-precision simulation of the two-dimensional
principal chiral model at correlation lengths up to ,
using a multi-grid Monte Carlo (MGMC) algorithm and approximately one year of
Cray C-90 CPU time. We extrapolate the finite-volume Monte Carlo data to
infinite volume using finite-size-scaling theory, and we discuss carefully the
systematic and statistical errors in this extrapolation. We then compare the
extrapolated data to the renormalization-group predictions. The deviation from
asymptotic scaling, which is at , decreases to
at . We also analyze the dynamic critical
behavior of the MGMC algorithm using lattices up to , finding
the dynamic critical exponent
(subjective 68% confidence interval). Thus, for this asymptotically free model,
critical slowing-down is greatly reduced compared to local algorithms, but not
completely eliminated.Comment: self-unpacking archive including .tex, .sty and .ps files; 126 pages
including all figure
Establishment of a new human osteosarcoma cell line, UTOS-1: cytogenetic characterization by array comparative genomic hybridization
The cytogenetic characteristics of osteosarcoma (OS) remain controversial. The establishment of a new human OS cell line may improve the characterization. We report the establishment of a new human osteosarcoma cell line, UTOS-1, from a typical osteoblastic OS of an 18-year-old man. Cultured UTOS-1 cells are spindle-shaped, and have been maintained in vitro for over 50 passages in more than 2 years. Xenografted UTOS-1 cells exhibit features typical of OS, such as production of osteoid or immature bone matrix, and proliferation potency in vivo. UTOS-1 also exhibit morphological and immunohistochemical characteristics typical of osteoblastic OS. Chromosomal analysis by G-band show 73~85 chromosomes with complicated translocations. Array CGH show frequent gains at locus DAB2 at chromosome 5q13, CCND2 at 12p13, MDM2 at 12q14.3-q15, FLI and TOP3A at 17p11.2-p12 and OCRL1 at Xq25, and show frequent losses at HTR1B at 6q13, D6S268 at 6q16.3-q21, SHGC17327 at 18ptel, and STK6 at 20q13.2-q13.3. The UTOS-1 cell line may prove useful for biologic and molecular pathogenetic investigations of human OS
- …