3,986 research outputs found

    Using Spin Correlations to Distinguish Zh from ZA at the International Linear Collider

    Get PDF
    We investigate how to exploit the spin information imparted to the Z boson in associated Higgs production at a future linear collider as an aid in distinguishing between CP-even and CP-odd Higgs bosons. We apply a generalized spin-basis analysis which allowsus to study the possibilities offered by non-traditional choices of spin projection axis. In particular, we find that the Z bosons produced in association with a CP-even Higgs via polarized collisions are in a single transverse spin-state (>90% purity) when we use the Zh-transverse basis, provided that the Z~bosons are not ultra-relativistic (speed <0.9c). This same basis applied to the associated production of a CP-odd Higgs yields Z's that are an approximately equal mixture of longitudinal and transverse polarizations. We present a decay angular distribution which could be used to distinguish between the CP-even and CP-odd cases. Finally, we make a few brief remarks about how this distribution would be affected if the Higgs boson turns out to not be a CP-eigenstate.Comment: 48 pages, 18 figures, revtex

    Space-time evolution induced by spinor fields with canonical and non-canonical kinetic terms

    Full text link
    We study spinor field theories as an origin to induce space-time evolution. Self-interacting spinor fields with canonical and non-canonical kinetic terms are considered in a Friedman-Robertson-Walker universe. The deceleration parameter is calculated by solving the equation of motion and the Friedman equation, simultaneously. It is shown that the spinor fields can accelerate and decelerate the universe expansion. To construct realistic models we discuss the contributions from the dynamical symmetry breaking.Comment: 16 pages, 19 figure

    Elementary Excitations in Quantum Antiferromagnetic Chains: Dyons, Spinons and Breathers

    Full text link
    Considering experimental results obtained on three prototype compounds, TMMC, CsCoCl3 (or CsCoBr3) and Cu Benzoate, we discuss the importance of non-linear excitations in the physics of quantum (and classical) antiferromagnetic spin chains.Comment: Invited at the International Symposium on Cooperative Phenomena of Assembled Metal Complexes, November 15-17, 2001, Osaka, Japa

    Chiral Properties of QCD Vacuum in Magnetars- A Nambu-Jona-Lasinio Model with Semi-Classical Approximation

    Full text link
    The breaking of chiral symmetry of light quarks at zero temperature in presence of strong quantizing magnetic fiels is studied using Nambu-Jona-Lasinio (NJL) model with Thomas-Fermi type semi-classical formalism. It is found that the dynamically generated light quark mass can never become zero if the Landau levels are populated and the mass increases with the increase of magnetic field strength.Comment: REVTEX 11 Pages, One .eps figure (included

    Dynamical symmetry breaking in the external gravitational and constant magnetic fields

    Get PDF
    We investigate the effects of the external gravitational and constant magnetic fields to the dynamical symmetrybreaking. As simple models of the dynamical symmetry breaking we consider the Nambu-Jona-Lasinio (NJL) model and the supersymmetric Nambu-Jona-Lasinio (SUSY NJL) model non-minimally interacting with the external gravitational field and minimally interacting with constant magnetic field. The explicit expressions for the scalar and spinor Green functions are found up to the linear terms on the spacetime curvature and exactly for a constant magnetic field. We obtain the effective potential of the above models from the Green functions in the magnetic field in curved spacetime. Calculating the effective potential numerically with the varying curvature and/or magnetic fields we show the effects of the external gravitational and magnetic fields to the phase structure of the theories. In particular, increase of the curvature in the spontaneously broken chiral symmetry phase due to the fixed magnetic field makes this phase to be less broken. On the same time strong magnetic field quickly induces chiral symmetry breaking even at the presence of fixed gravitational field within nonbroken phase.Comment: 23 pages, Latex, epic.sty and eepic.sty are use

    Inhomogeneous Quasi-stationary States in a Mean-field Model with Repulsive Cosine Interactions

    Full text link
    The system of N particles moving on a circle and interacting via a global repulsive cosine interaction is well known to display spatially inhomogeneous structures of extraordinary stability starting from certain low energy initial conditions. The object of this paper is to show in a detailed manner how these structures arise and to explain their stability. By a convenient canonical transformation we rewrite the Hamiltonian in such a way that fast and slow variables are singled out and the canonical coordinates of a collective mode are naturally introduced. If, initially, enough energy is put in this mode, its decay can be extremely slow. However, both analytical arguments and numerical simulations suggest that these structures eventually decay to the spatially uniform equilibrium state, although this can happen on impressively long time scales. Finally, we heuristically introduce a one-particle time dependent Hamiltonian that well reproduces most of the observed phenomenology.Comment: to be published in J. Phys.

    Dynamical Symmetry Breaking in Spaces with Constant Negative Curvature

    Full text link
    By using the Nambu-Jona-Lasinio model, we study dynamical symmetry breaking in spaces with constant negative curvature. We show that the physical reason for zero value of critical coupling value gc=0g_c = 0 in these spaces is connected with the effective reduction of dimension of spacetime 1+D1+11 + D \to 1 + 1 in the infrared region, which takes place for any dimension 1+D1 + D. Since the Laplace-Beltrami operator has a gap in spaces with constant negative curvature, such an effective reduction for scalar fields is absent and there are not problems with radiative corrections due to scalar fields. Therefore, dynamical symmetry breaking with the effective reduction of the dimension of spacetime for fermions in the infrared region is consistent with the Mermin-Wagner-Coleman theorem, which forbids spontaneous symmetry breaking in (1 + 1)-dimensional spacetime.Comment: minor text changes, added new reference

    Dynamical symmetry breaking in the Nambu-Jona-Lasino model with external gravitational and constant electric fields

    Full text link
    An investigation of the Nambu-Jona-Lasino model with external constant electric and weak gravitational fields is carried out in three- and four- dimensional spacetimes. The effective potential of the composite bifermionic fields is calculated keeping terms linear in the curvature, while the electric field effect is treated exactly by means of the proper- time formalism. A rich dynamical symmetry breaking pattern, accompanied by phase transitions which are ruled, independently, by both the curvature and the electric field strength is found. Numerical simulations of the transitions are presented.Comment: 20 pages, LaTeX, 6 .ps-figures, Final version published in "Classical and Quantum Gravity

    A Prediction of Observable Rotation in the ICM of Abell 3266

    Full text link
    We present a numerical Hydro+N-body model of A3266 whose X-ray surface brightness, temperature distribution, and galaxy spatial and velocity distribution data are consistent with the A3266 data. The model is an old (~3 Gyr), off-axis merger having a mass ratio of ~2.5:1. The less massive subcluster in the model is moving on a trajectory from southwest to northeast passing on the western side of the dominant cluster while moving into the plane of the sky at ~45 degrees. Off-axis mergers such as this one are an effective mechanism for transferring angular momentum to the intracluster medium (ICM), making possible a large scale rotation of the ICM. We demonstrate here that the ICM rotation predicted by our fully 3-dimensional model of A3266 is observable with current technology. As an example, we present simulated observations assuming the capabilities of the high resolution X-ray spectrometer (XRS) which was to have flown on Astro-E.Comment: 9 pages, 7 postscript figures, Fig. 3 and 6 are color postscript, Accepted for publication in the Astrophysical Journa

    Curvature-induced phase transitions in the inflationary universe - Supersymmetric Nambu-Jona-Lasinio Model in de Sitter spacetime -

    Get PDF
    The phase structure associated with the chiral symmetry is thoroughly investigated in de Sitter spacetime in the supersymmetric Nambu-Jona-Lasinio model with supersymmetry breaking terms. The argument is given in the three and four space-time dimensions in the leading order of the 1/N expansion and it is shown that the phase characteristics of the chiral symmetry is determined by the curvature of de Sitter spacetime. It is found that the symmetry breaking takes place as the first order as well as second order phase transition depending on the choice of the coupling constant and the parameter associated with the supersymmetry breaking term. The critical curves expressing the phase boundary are obtained. We also discuss the model in the context of the chaotic inflation scenario where topological defects (cosmic strings) develop during the inflation.Comment: 29 pages, 6 figures, REVTe
    corecore