10,292 research outputs found

    Recent progress on intrinsic charm

    Full text link
    Over the past  ⁣ ⁣10\sim\!\! 10 years, the topic of the nucleon's nonperturbative or intrinsic\textit{intrinsic} charm (IC) content has enjoyed something of a renaissance, largely motivated by theoretical developments involving quark modelers and PDF fitters. In this talk I will briefly describe the importance of intrinsic charm to various issues in high-energy phenomenology, and survey recent progress in constraining its overall normalization and contribution to the momentum sum rule of the nucleon. I end with the conclusion that progress on the side of calculation has now placed the onus on experiment to unambiguously resolve the proton's intrinsic charm component.Comment: Invited talk at the Conference "XIIth Quark Confinement and the Hadron Spectrum" (Thessaloniki, Greece; 29th August - 3rd September 2016). 9 pages, 4 figures; reference added in version

    The mass and dynamical state of Abell 2218

    Get PDF
    Abell 2218 is one of a handful of clusters in which X-ray and lensing analyses of the cluster mass are in strong disagreement. It is also a system for which X-ray data and radio measurements of the Sunyaev-Zel'dovich decrement have been combined in an attempt to constrain the Hubble constant. However, in the absence of reliable information on the temperature structure of the intracluster gas, most analyses have been carried out under the assumption of isothermality. We combine X-ray data from the ROSAT PSPC and the ASCA GIS instruments, enabling us to fit non-isothermal models, and investigate the impact that this has on the X-ray derived mass and the predicted Sunyaev-Zel'dovich effect. We find that a strongly non-isothermal model for the intracluster gas, which implies a central cusp in the cluster mass distribution, is consistent with the available X-ray data and compatible with the lensing results. At r<1 arcmin, there is strong evidence to suggest that the cluster departs from a simple relaxed model. We analyse the dynamics of the galaxies and find that the central galaxy velocity dispersion is too high to allow a physical solution for the galaxy orbits. The quality of the radio and X-ray data do not at present allow very restrictive constraints to be placed on H_0. It is apparent that earlier analyses have under-estimated the uncertainties involved. However, values greater than 50 km/s/Mpc are preferred when lensing constraints are taken into account.Comment: 16 pages, 9 postscript figures, accepted for publication in MNRA
    corecore