125 research outputs found

    Cold Collision Frequency Shift of the 1S-2S Transition in Hydrogen

    Get PDF
    We have observed the cold collision frequency shift of the 1S-2S transition in trapped spin-polarized atomic hydrogen. We find Δν1S−2S=−3.8(8)×10−10nHzcm3\Delta \nu_{1S-2S} = -3.8(8)\times 10^{-10} n Hz cm^3, where nn is the sample density. From this we derive the 1S-2S s-wave triplet scattering length, a1S−2S=−1.4(3)a_{1S-2S}=-1.4(3) nm, which is in fair agreement with a recent calculation. The shift provides a valuable probe of the distribution of densities in a trapped sample.Comment: Accepted for publication in PRL, 9 pages, 4 PostScript figures, ReVTeX. Updated connection of our measurement to theoretical wor

    Excitation-assisted inelastic processes in trapped Bose-Einstein condensates

    Full text link
    We find that inelastic collisional processes in Bose-Einstein condensates induce local variations of the mean-field interparticle interaction and are accompanied by the creation/annihilation of elementary excitation. The physical picture is demonstrated for the case of three body recombination in a trapped condensate. For a high trap barrier the production of high energy trapped single particle excitations results in a strong increase of the loss rate of atoms from the condensate.Comment: 4 pages, no figure

    Electromagnetic response of a static vortex line in a type-II superconductor : a microscopic study

    Full text link
    The electromagnetic response of a pinned Abrikosov fluxoid is examined in the framework of the Bogoliubov-de Gennes formalism. The matrix elements and the selection rules for both the single photon (emission - absorption) and two photon (Raman scattering) processes are obtained. The results reveal striking asymmetries: light absorption by quasiparticle pair creation or single quasiparticle scattering can occur only if the handedness of the incident radiation is opposite to that of the vortex core states. We show how these effects will lead to nonreciprocal circular birefringence, and also predict structure in the frequency dependence of conductivity and in the differential cross section of the Raman scattering.Comment: 14 pages (RevTex

    Bragg spectroscopy of a Bose-Einstein condensate

    Full text link
    Properties of a Bose-Einstein condensate were studied by stimulated, two-photon Bragg scattering. The high momentum and energy resolution of this method allowed a spectroscopic measurement of the mean-field energy and of the intrinsic momentum uncertainty of the condensate. The coherence length of the condensate was shown to be equal to its size. Bragg spectroscopy can be used to determine the dynamic structure factor over a wide range of energy and momentum transfers.Comment: 4 pages, 3 figure

    Quantum saturation and condensation of excitons in Cu2_2O: a theoretical study

    Full text link
    Recent experiments on high density excitons in Cu2_2O provide evidence for degenerate quantum statistics and Bose-Einstein condensation of this nearly ideal gas. We model the time dependence of this bosonic system including exciton decay mechanisms, energy exchange with phonons, and interconversion between ortho (triplet-state) and para (singlet-state) excitons, using parameters for the excitonic decay, the coupling to acoustic and low-lying optical phonons, Auger recombination, and ortho-para interconversion derived from experiment. The single adjustable parameter in our model is the optical-phonon cooling rate for Auger and laser-produced hot excitons. We show that the orthoexcitons move along the phase boundary without crossing it (i.e., exhibit a ``quantum saturation''), as a consequence of the balance of entropy changes due to cooling of excitons by phonons and heating by the non-radiative Auger two-exciton recombination process. The Auger annihilation rate for para-para collisions is much smaller than that for ortho-para and ortho-ortho collisions, explaining why, under the given experimental conditions, the paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex, figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Correlating the nanostructure and electronic properties of InAs nanowires

    Full text link
    The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are ~4X larger in the nominally defect-free segments of the wire. We also find that dark field optical intensity is correlated with the mobility, suggesting a simple route for selecting wires with a low defect density. At low temperatures, FETs fabricated on high defect density segments of InAs nanowires showed transport properties consistent with single electron charging, even on devices with low resistance ohmic contacts. The charging energies obtained suggest quantum dot formation at defects in the wires. These results reinforce the importance of controlling the defect density in order to produce high quality electrical and optical devices using InAs nanowires.Comment: Related papers at http://pettagroup.princeton.ed

    Spinor condensates and light scattering from Bose-Einstein condensates

    Full text link
    These notes discuss two aspects of the physics of atomic Bose-Einstein condensates: optical properties and spinor condensates. The first topic includes light scattering experiments which probe the excitations of a condensate in both the free-particle and phonon regime. At higher light intensity, a new form of superradiance and phase-coherent matter wave amplification were observed. We also discuss properties of spinor condensates and describe studies of ground--state spin domain structures and dynamical studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999 Summer School, Session LXXI

    Condensation of bosons in kinetic regime

    Full text link
    We study the kinetic regime of the Bose-condensation of scalar particles with weak λϕ4\lambda \phi^4 self-interaction. The Boltzmann equation is solved numerically. We consider two kinetic stages. At the first stage the condensate is still absent but there is a nonzero inflow of particles towards p=0{\bf p} = {\bf 0} and the distribution function at p=0{\bf p} ={\bf 0} grows from finite values to infinity in a finite time. We observe a profound similarity between Bose-condensation and Kolmogorov turbulence. At the second stage there are two components, the condensate and particles, reaching their equilibrium values. We show that the evolution in both stages proceeds in a self-similar way and find the time needed for condensation. We do not consider a phase transition from the first stage to the second. Condensation of self-interacting bosons is compared to the condensation driven by interaction with a cold gas of fermions; the latter turns out to be self-similar too. Exploiting the self-similarity we obtain a number of analytical results in all cases.Comment: 23 pages plus 11 uuencoded figures, LaTeX, REVTEX 3.0 versio
    • …
    corecore