1,926 research outputs found
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa
A Self-Consistent Model of the Circumstellar Debris Created by a Giant Hypervelocity Impact in the HD172555 System
Spectral modeling of the large infrared excess in the Spitzer IRS spectra of
HD 172555 suggests that there is more than 10^19 kg of sub-micron dust in the
system. Using physical arguments and constraints from observations, we rule out
the possibility of the infrared excess being created by a magma ocean planet or
a circumplanetary disk or torus. We show that the infrared excess is consistent
with a circumstellar debris disk or torus, located at approximately 6 AU, that
was created by a planetary scale hypervelocity impact. We find that radiation
pressure should remove submicron dust from the debris disk in less than one
year. However, the system's mid-infrared photometric flux, dominated by
submicron grains, has been stable within 4 percent over the last 27 years, from
IRAS (1983) to WISE (2010). Our new spectral modeling work and calculations of
the radiation pressure on fine dust in HD 172555 provide a self-consistent
explanation for this apparent contradiction. We also explore the unconfirmed
claim that 10^47 molecules of SiO vapor are needed to explain an emission
feature at 8 um in the Spitzer IRS spectrum of HD 172555. We find that unless
there are 10^48 atoms or 0.05 Earth masses of atomic Si and O vapor in the
system, SiO vapor should be destroyed by photo-dissociation in less than 0.2
years. We argue that a second plausible explanation for the 8 um feature can be
emission from solid SiO, which naturally occurs in submicron silicate "smokes"
created by quickly condensing vaporized silicate.Comment: Accepted to the Astrophysical Journa
A primordial atmospheric origin of hydrospheric deuterium enrichment on Mars
The deuterium-to-hydrogen (D/H or 2H/1H) ratio of Martian atmospheric water
(~6x standard mean ocean water, SMOW) is higher than that of known sources,
requiring planetary enrichment. A recent measurement by NASA's Mars Science
Laboratory rover Curiosity of >3 Gyr clays yields a D/H ratio ~3x SMOW,
demonstrating that most enrichment occurs early in Mars's history. As on Venus,
Mars's D/H enrichment is thought to reflect preferential loss to space of 1H
(protium) relative to 2H (deuterium), but the global environmental context of
large and early hydrogen losses remain to be determined. Here, we apply a
recent model of primordial atmosphere evolution to Mars, link the magma ocean
of the accretion epoch with a subsequent water-ocean epoch, and calculate the
behavior of deuterium for comparison with the observed record. We find that a
~2-3x hydrospheric deuterium-enrichment is produced if the Martian magma ocean
is chemically reducing at last equilibration with the primordial atmosphere,
making H2-CO the initially dominant species, with minor abundances of H2O-CO2.
Reducing gases - in particular H2 - can cause greenhouse warming and prevent a
water ocean from freezing immediately after the magma ocean epoch. Moreover,
the pressure-temperature conditions are high enough to produce ocean-atmosphere
H2O-H2 isotopic equilibrium such that surface H2O strongly concentrates
deuterium relative to H2, which preferentially takes up protium and escapes
from the primordial atmosphere. The proposed scenario of primordial H2-rich
outgassing and escape suggests significant durations (>Myr) of chemical
conditions on the Martian surface conducive to prebiotic chemistry immediately
following Martian accretion.Comment: 5 figure
Martian Igneous Geochemistry: The Nature of the Martian Mantle
Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of martian meteorites to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most martian meteorites contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. Martian meteorites form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites)
Making judgements about students making work : lecturers’ assessment practices in art and design.
This research study explores the assessment practices in two higher education art and design departments. The key aim of this research was to explore art and design studio assessment practices as lived by and experienced by art and design lecturers. This work draws on two bodies of pre existing research. Firstly this study adopted innovative methodological approaches that have been employed to good effect to explore assessment in text based subjects (think aloud) and moderation mark agreement (observation). Secondly the study builds on existing research into the assessment of creative practice. By applying thinking aloud methodologies into a creative practice assessment context the authors seek to illuminate the ‘in practice’ rather than espoused assessment approaches adopted. The analysis suggests that lecturers in the study employed three macro conceptions of quality to support the judgement process. These were; the demonstration of significant learning over time, the demonstration of effective studentship and the presentation of meaningful art/design work
Geographically touring the eastern bloc: British geography, travel cultures and the Cold War
This paper considers the role of travel in the generation of geographical knowledge of the eastern bloc by British geographers. Based on oral history and surveys of published work, the paper examines the roles of three kinds of travel experience: individual private travels, tours via state tourist agencies, and tours by academic delegations. Examples are drawn from across the eastern bloc, including the USSR, Poland, Romania, East Germany and Albania. The relationship between travel and publication is addressed, notably within textbooks, and in the Geographical Magazine. The study argues for the extension of accounts of cultures of geographical travel, and seeks to supplement the existing historiography of Cold War geography
Recovery of Electron/Proton Radiation-Induced Defects in n+p AlInGaP Solar Cell by Minority-Carrier Injection Annealing
A high efficient In0.48Ga0.52P/In0.01Ga0.99As/Ge triple junction solar cell has been developed for application in space and terrestrial concentrator PV system [1-3]. Recently, a high conversion efficiency of 31.5% (AM1.5G) has been obtained in InGaP/(In)GaAs/Ge triple junction solar cell, and as a new top cell material of triple junction cells, (Al)InGaP [1] has been proposed to improve the open-circuit voltage (Voc) because it shows a higher Voc of 1.5V while maintaining the same short-circuit current (ISC) as a conventional InGaP top cell under AM1.5G conditions as seen in figure 1 (a). Moreover, the spectral response of 1.96eV AlInGaP cell with a thickness of 2.5..m shows a higher response in the long wavelength region, compared with that of 1.87eV InGaP cell with 0.6..m thickness, as shown in figure 1 (b). Its development will realize next generation multijunction (MJ) solar cells such as a lattice mismatched AlInGaP/InGaAs/Ge 3-junction and lattice matched AlInGaP/GaAs/InGaAsN/Ge 4-junction solar cells. Figure 2 shows the super high-efficiency MJ solar cell structures and wide band spectral response by MJ solar cells under AM1.5G conditions. For realizing high efficient MJ space solar cells, the higher radiation-resistance under the electron or proton irradiation is required. The irradiation studies for a conventional top cell InGaP have been widely done [4-6], but little irradiation work has been performed on AlInGaP solar cells. Recently, we made the first reports of 1 MeV electron or 30 keV proton irradiation effects on AlInGaP solar cells, and evaluated the defects generated by the irradiation [7,8]. The present study describes the recovery of 1 MeV electron / 30 keV proton irradiation-induced defects in n+p- AlInGaP solar cells by minority-carrier injection enhanced annealing or isochronal annealing. The origins of irradiation-induced defects observed by deep level transient spectroscopy (DLTS) measurements are discussed
Ozone loss derived from balloon-borne tracer measurements in the 1999/2000 Arctic winter
Balloon-borne measurements of CFC11 (from the DIRAC in situ gas chromatograph and the DESCARTES grab sampler), ClO and O3 were made during the 1999/2000 Arctic winter as part of the SOLVE-THESEO 2000 campaign, based in Kiruna (Sweden). Here we present the CFC11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC11 and O3 measured on the flights. The peak ozone loss (~1200ppbv) occurs in the 440-470K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days
Melt generation beneath Arctic Ridges: Implications from Ule
We present new 238U-230Th-226Ra-210Pb, 235U-231Pa, and Nd, Sr, Hf, and Pb isotope data for the slow- to ultraslow-spreading Mohns, Knipovich, and Gakkel Ridges. Combined with previous work, our data from the Arctic Ridges cover the full range of axial depths from the deep northernmost Gakkel Ridge shallowing upwards to the Knipovich, Mohns, and Kolbeinsey Ridges north of Iceland. Age-constrained samples from the Mohns and Knipovich Ridges have (230Th/238U) activity ratios ranging from 1.165 to 1.30 and 1.101 to 1.225, respectively. The high 230Th excesses of Kolbeinsey, Mohns, and Knipovich mid-ocean ridge basalts (MORB) are erupted from ridges producing relatively thin (Mohns, Knipovich) to thick (Kolbeinsey) oceanic crust with evidence for sources ranging from mostly peridotite (Kolbeinsey) to eclogite-rich mantle (Mohns, Knipovich). Age-constrained lavas from 85ºE on the Gakkel Ridge, on the other hand, overlie little to no crust and range from small (~5%) 230Th excesses to small 238U excesses (~5%). The strong negative correlation between (230Th/238U) values vs. axial ridge depth among Arctic ridge basalts is controlled not only by solidus depth influence on 238U-230Th disequilibria, but also by variations in mantle source lithology and depth to the base of the lithosphere, which is expected to vary at ultra-slow spreading ridges. Small 231Pa excesses (65% excess) in age constrained basalts support the presence of eclogite in the mantle source for this region. Conversely, the ultraslow-spreading Gakkel Ridge basalts are homogeneous, with Sr, Nd, and Hf radiogenic isotopic signatures indicative of a long time-averaged depleted mantle source. The Gakkel samples have minimum (226 Ra/230Th) ratios ranging from 3.07 to 3.65 ± 3%, which lie along and extend the global negative correlation between 226Ra and 230Th excesses observed in MORB. The new 230Th-226Ra data support a model for global MORB production in which deep melts record interaction with shallower materials. This scenario requires either mixing with shallow-derived melts, or melt-rock reaction with shallower rocks in the lithosphere or crust
- …