11,975 research outputs found

    An Analysis of \pi\pi-Scattering Phase Shift and Existence of \sigma(555) particle

    Full text link
    In most of the Nambu:Jona-Lasinio(NJL)-type models, realizing the hidden chiral symmetry, the existence of a scalar particle \sigma is needed with a mass m_\sigma=2 m_q, as a partner of the Nambu-Goldstone boson \pi. However, the results of many analyses on \pi\pi phase-shift thus far made have been negative for its existence. In this paper we re-analyze the phase-shift, applying a new method, the interfering amplitude method, which treats the T-matrix directly and describes multi-resonances in conformity with the unitarity. As a result, the existence of \sigma has been strongly suggested from the behavior of the \pi\pi-->\pi\pi phase shift between the \pi\pi- and the KK- thresholds, with mass = 553.3 +- 0.5_{st} MeV and width= 242.6 +- 1.2_{st} MeV. The most crucial point in our analysis is the introduction of a negative background phase, possibly reflecting a ``repulsive core" in \pi\pi interactions. The properties of f_0(980) are also investigated from data including those over the KK threshold. Its mass is obtained as 993.2 +- 6.5_{st} +- 6.9_{sys} MeV. Its width is about a hundred MeV, although this depends largely on the treatment of the elasticity and the \pi\pi-->KK phase shift, both of which may have large experimental uncertainties.Comment: 22 pages, Latex with Prog. Theor. Phys. format PTPTEX.sty, 4 EPS figure

    pi^0 pi^0 Scattering Amplitudes and Phase Shifts Obtained by the pi^- P Charge Exchange Process

    Full text link
    The results of the analysis of the pi^0 pi^0 scattering amplitudes obtained with pi^- P charge exchange reaction, pi^- P --> pi^0 pi^0 n, data at 9 GeV/c are presented. The pi^0 pi^0 scattering amplitudes show clear f_0(1370) and f_2(1270) signals in the S and D waves, respectively. The pi^0 pi^0 scattering phase shifts have been obtained below Kbar K threshold and been analyzed by the Interfering Amplitude method with introduction of negative background phases. The results show a S wave resonance, sigma. Its Breit-Wigner parameters are in good agreement with those of our previous analysis on the pi^+ pi^- phase shift data.Comment: 4 pages, 4 figures. Proceedings of the int. conf. Hadron'99 at Beijing, Aug. 1999. Presented for the collaboration of A.M.Ma, K.Takamatsu, M.Y.Ishida, S.Ishida, T.Ishida, T. Tsuru and H. Shimizu, and the E135 collaboration. For our activities on sigma, visit http://amaterasu.kek.jp/sigm

    Mixing among light scalar mesons and L=1 q\bar{q} scalar mesons

    Full text link
    Following the re-establishment of the \sigma(600) and the \kappa(900), the light scalar mesons a_0(980) and f_0(980) together with the \sigma(600) and the \kappa(900) are considered as the chiral scalar partner of pseudoscalar nonet in SU(3) chiral symmetry, and the high mass scalar mesons a_0(1450), K^*_0(1430), f_0(1370) and f_0(1710) turned out to be considered as the L=1 q\bar{q} scalar mesons. We assume that the high mass of the L=1 q\bar{q} scalar mesons is caused by the mixing with the light scalar mesons. For the structure of the light scalar mesons, we adopted the qq\bar{q}\bar{q} model in order to explain the "scalar meson puzzle". The inter-mixing between the light scalar nonet and the high mass L=1 q\bar{q} nonet and the intra-mixing among each nonet are analyzed by including the glueball into the high mass scalar nonet.Comment: 16 pages, 5 figure

    Superconducting anisotropy and evidence for intrinsic pinning in single crystalline MgB2_2

    Full text link
    We examine the superconducting anisotropy γc=(mc/mab)1/2\gamma_c = (m_c / m_{ab})^{1/2} of a metallic high-TcT_c superconductor MgB2_2 by measuring the magnetic torque of a single crystal. The anisotropy γc\gamma_c does not depend sensitively on the applied magnetic field at 10 K. We obtain the anisotropy parameter γc=4.31±0.14\gamma_c = 4.31 \pm 0.14. The torque curve shows the sharp hysteresis peak when the field is applied parallel to the boron layers. This comes from the intrinsic pinning and is experimental evidence for the occurrence of superconductivity in the boron layers.Comment: REVTeX 4, To be published in Physical Review
    • …
    corecore