1,027 research outputs found
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Molecular line mapping of the giant molecular cloud associated with RCW 106 - II. Column density and dynamical state of the clumps
We present a fully sampled C^{18}O (1-0) map towards the southern giant
molecular cloud (GMC) associated with the HII region RCW 106, and use it in
combination with previous ^{13}CO (1-0) mapping to estimate the gas column
density as a function of position and velocity. We find localized regions of
significant ^{13}CO optical depth in the northern part of the cloud, with
several of the high-opacity clouds in this region likely associated with a
limb-brightened shell around the HII region G333.6-0.2. Optical depth
corrections broaden the distribution of column densities in the cloud, yielding
a log-normal distribution as predicted by simulations of turbulence.
Decomposing the ^{13}CO and C^{18}O data cubes into clumps, we find relatively
weak correlations between size and linewidth, and a more sensitive dependence
of luminosity on size than would be predicted by a constant average column
density. The clump mass spectrum has a slope near -1.7, consistent with
previous studies. The most massive clumps appear to have gravitational binding
energies well in excess of virial equilibrium; we discuss possible
explanations, which include magnetic support and neglect of time-varying
surface terms in the virial theorem. Unlike molecular clouds as a whole, the
clumps within the RCW 106 GMC, while elongated, appear to show random
orientations with respect to the Galactic plane.Comment: 17 pages, to appear in MNRA
3D Spinodal Decomposition in the Inertial Regime
We simulate late-stage coarsening of a 3D symmetric binary fluid using a
lattice Boltzmann method. With reduced lengths and times l and t respectively
(scales set by viscosity, density and surface tension) our data sets cover 1 <
l
100 we find clear evidence of Furukawa's inertial scaling (l ~ t^{2/3}),
although the crossover from the viscous regime (l ~ t) is very broad. Though it
cannot be ruled out, we find no indication that Re is self-limiting (l ~
t^{1/2}) as proposed by M. Grant and K. R. Elder [Phys. Rev. Lett. 82, 14
(1999)].Comment: 4 pages, 3 eps figures, RevTex, minor changes to bring in line with
published version. Mobility values added to Table
Towards Better Integrators for Dissipative Particle Dynamics Simulations
Coarse-grained models that preserve hydrodynamics provide a natural approach
to study collective properties of soft-matter systems. Here, we demonstrate
that commonly used integration schemes in dissipative particle dynamics give
rise to pronounced artifacts in physical quantities such as the compressibility
and the diffusion coefficient. We assess the quality of these integration
schemes, including variants based on a recently suggested self-consistent
approach, and examine their relative performance. Implications of
integrator-induced effects are discussed.Comment: 4 pages, 3 figures, 2 tables, accepted for publication in Phys. Rev.
E (Rapid Communication), tentative publication issue: 01 Dec 200
Noiseless nonreciprocity in a parametric active device
Nonreciprocal devices such as circulators and isolators belong to an
important class of microwave components employed in applications like the
measurement of mesoscopic circuits at cryogenic temperatures. The measurement
protocols usually involve an amplification chain which relies on circulators to
separate input and output channels and to suppress backaction from different
stages on the sample under test. In these devices the usual reciprocal symmetry
of circuits is broken by the phenomenon of Faraday rotation based on magnetic
materials and fields. However, magnets are averse to on-chip integration, and
magnetic fields are deleterious to delicate superconducting devices. Here we
present a new proposal combining two stages of parametric modulation emulating
the action of a circulator. It is devoid of magnetic components and suitable
for on-chip integration. As the design is free of any dissipative elements and
based on reversible operation, the device operates noiselessly, giving it an
important advantage over other nonreciprocal active devices for quantum
information processing applications.Comment: 17 pages, 4 figures + 12 pages Supplementary Informatio
Persistence exponents in a 3D symmetric binary fluid mixture
The persistence exponent, theta, is defined by N_F sim t^theta, where t is
the time since the start of the coarsening process and the "no-flip fraction",
N_F, is the number of points that have not seen a change of "color" since t=0.
Here we investigate numerically the persistence exponent for a binary fluid
system where the coarsening is dominated by hydrodynamic transport. We find
that N_F follows a power law decay (as opposed to exponential) with the value
of theta somewhat dependent on the domain growth rate (L sim t^alpha, where L
is the average domain size), in the range theta=1.23 +-0.1 (alpha = 2/3) to
theta=1.37 +-0.2 (alpha=1). These alpha values correspond to the inertial and
viscous hydrodynamic regimes respectively.Comment: 9 pages RevTex, 9 figures included as eps files on last 3 pages,
submitted to Phys Rev
Fluctuations of elastic interfaces in fluids: Theory and simulation
We study the dynamics of elastic interfaces-membranes-immersed in thermally
excited fluids. The work contains three components: the development of a
numerical method, a purely theoretical approach, and numerical simulation. In
developing a numerical method, we first discuss the dynamical coupling between
the interface and the surrounding fluids. An argument is then presented that
generalizes the single-relaxation time lattice-Boltzmann method for the
simulation of hydrodynamic interfaces to include the elastic properties of the
boundary. The implementation of the new method is outlined and it is tested by
simulating the static behavior of spherical bubbles and the dynamics of bending
waves. By means of the fluctuation-dissipation theorem we recover analytically
the equilibrium frequency power spectrum of thermally fluctuating membranes and
the correlation function of the excitations. Also, the non-equilibrium scaling
properties of the membrane roughening are deduced, leading us to formulate a
scaling law describing the interface growth, W^2(L,T)=L^3 g[t/L^(5/2)], where
W, L and T are the width of the interface, the linear size of the system and
the temperature respectively, and g is a scaling function. Finally, the
phenomenology of thermally fluctuating membranes is simulated and the frequency
power spectrum is recovered, confirming the decay of the correlation function
of the fluctuations. As a further numerical study of fluctuating elastic
interfaces, the non-equilibrium regime is reproduced by initializing the system
as an interface immersed in thermally pre-excited fluids.Comment: 15 pages, 11 figure
Influence of Hydrodynamic Interactions on Mechanical Unfolding of Proteins
We incorporate hydrodynamic interactions in a structure-based model of
ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak
force when stretching the protein at constant speed, especially at larger
speeds. Hydrodynamic interactions are also shown to facilitate unfolding at
constant force and inhibit stretching by fluid flows.Comment: to be published in Journal of Physics: Condensed Matte
Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media
Numerical micropermeametry is performed on three dimensional porous samples
having a linear size of approximately 3 mm and a resolution of 7.5 m. One
of the samples is a microtomographic image of Fontainebleau sandstone. Two of
the samples are stochastic reconstructions with the same porosity, specific
surface area, and two-point correlation function as the Fontainebleau sample.
The fourth sample is a physical model which mimics the processes of
sedimentation, compaction and diagenesis of Fontainebleau sandstone. The
permeabilities of these samples are determined by numerically solving at low
Reynolds numbers the appropriate Stokes equations in the pore spaces of the
samples. The physical diagenesis model appears to reproduce the permeability of
the real sandstone sample quite accurately, while the permeabilities of the
stochastic reconstructions deviate from the latter by at least an order of
magnitude. This finding confirms earlier qualitative predictions based on local
porosity theory. Two numerical algorithms were used in these simulations. One
is based on the lattice-Boltzmann method, and the other on conventional
finite-difference techniques. The accuracy of these two methods is discussed
and compared, also with experiment.Comment: to appear in: Phys.Rev.E (2002), 32 pages, Latex, 1 Figur
An all silicon quantum computer
A solid-state implementation of a quantum computer composed entirely of
silicon is proposed. Qubits are Si-29 nuclear spins arranged as chains in a
Si-28 (spin-0) matrix with Larmor frequencies separated by a large magnetic
field gradient. No impurity dopants or electrical contacts are needed.
Initialization is accomplished by optical pumping, algorithmic cooling, and
pseudo-pure state techniques. Magnetic resonance force microscopy is used for
readout. This proposal takes advantage of many of the successful aspects of
solution NMR quantum computation, including ensemble measurement, RF control,
and long decoherence times, but it allows for more qubits and improved
initialization.Comment: ReVTeX 4, 5 pages, 2 figure
- …