8,915 research outputs found

    Clear Experimental Signature of Charge-Orbital density wave in Nd1x_{1-x}Ca1+x_{1+x}MnO4_{4}

    Full text link
    Single Crystals of Nd1x_{1-x}Ca1+x_{1+x}MnO4_{4} have been prepared by the travelling floating-zone method, and possible evidence of a charge -orbital density wave in this material presented earlier [PRB68,092405 (2003)] using High Resolution Electron Microscopy [HRTEM] and Electron Diffraction [ED]. In the current note we present direct evidence of charge-orbital ordering in this material using heat capacity measurements. Our heat capacity measurements indicate a clear transition consistent with prior observation. We find two main transitions, one at temperature TH=310314T_{_H}=310-314 K, and other at TA=143T_{_A}=143 K. In addition, we may also conclude that there is a strong electron-phonon coupling in this material.Comment: 7 pages, 8 figure

    Temperature Dependent Polarized XANES Spectra for Zn-doped LSCO system

    Full text link
    The cuprates seem to exhibit statistics, dimensionality and phase transitions in novel ways. The nature of excitations [i.e. quasiparticle or collective], spin-charge separation, stripes [static and dynamics], inhomogeneities, psuedogap, effect of impurity dopings [e.g. Zn, Ni] and any other phenomenon in these materials must be consistently understood. Zn-doped LSCO single crystal were grown by TSFZ technique. Temperature dependent Polarized XANES [near edge local structure] spectra were measured at the BL13-B1 [Photon Factory] in the Flourescence mode from 10 K to 300 K. Since both stripes and nonmagnetic Zn impurities substituted for Cu give rise to inhomogeneous charge and spin distribution it is interesting to understand the interplay of Zn impurities and stripes. To understand these points we have used Zn-doping and some of the results obtained are as follows: The spectra show a strong dependence with respect to the polarization angle, θ\theta, as is evident at any temperature by comparing the spectra where the electric field vector is parallel with ab-plane to the one where it is parallel to the c-axis. By using the XANES [temperature] difference spectra we have determined T* [experimentally we find, T* \approx 160-170 K] for this sample. The XANES difference spectra shows that the changes in XANES features are larger in the ab-plane than the c-axis, this trend is expected since zinc is doped in the ab-plane at the copper site. Our study also complements the results in literature namely that zinc doping does not affect the c-axis transport.Comment: To appear in Physica C [ISS2001 Special Issue], related talk presented at ISS2001 as PC-16, 10 pages revtex and 7 pages of figures (pdf

    Hadron properties in the nuclear medium

    Full text link
    The QCD vacuum shows the dynamical breaking of chiral symmetry. In the hot/dense QCD medium, the chiral order parameter such as is expected to change as function of temperature TT and density ρ\rho of the medium, and its experimental detection is one of the main challenges in modern hadron physics. In this article, we discuss theoretical expectations for the in-medium hadron spectra associated with partial restoration of chiral symmetry and the current status of experiments with an emphasis on the measurements of properties of mesons produced in near-ground-state nuclei.Comment: 40 pages, submitted to Reviews of Modern Physic

    Heavy Baryon Production and Decay

    Full text link
    The branching ratio B(Lambda_c -> p K- pi+) normalizes the production and decay of charmed and bottom baryons. At present, this crucial branching ratio is extracted dominantly from B.bar -> baryons analyses. This note questions several of the underlying assumptions and predicts sizable B.bar -> D(*) N N'.bar X transitions, which were traditionally neglected. It predicts B(Lambda_c -> p K- pi+) to be significantly larger (0.07 +/- 0.02) than the world average. Some consequences are briefly mentioned. Several techniques to measure B(Lambda_c -> p K- pi+) are outlined with existing or soon available data samples. By equating two recent CLEO results, an appendix obtains B(D0 -> K- pi+)= 0.035 +/- 0.002, which is somewhat smaller than the current world average.Comment: 27 pages, 4 eps figures, revte

    EPG-representations with small grid-size

    Full text link
    In an EPG-representation of a graph GG each vertex is represented by a path in the rectangular grid, and (v,w)(v,w) is an edge in GG if and only if the paths representing vv an ww share a grid-edge. Requiring paths representing edges to be x-monotone or, even stronger, both x- and y-monotone gives rise to three natural variants of EPG-representations, one where edges have no monotonicity requirements and two with the aforementioned monotonicity requirements. The focus of this paper is understanding how small a grid can be achieved for such EPG-representations with respect to various graph parameters. We show that there are mm-edge graphs that require a grid of area Ω(m)\Omega(m) in any variant of EPG-representations. Similarly there are pathwidth-kk graphs that require height Ω(k)\Omega(k) and area Ω(kn)\Omega(kn) in any variant of EPG-representations. We prove a matching upper bound of O(kn)O(kn) area for all pathwidth-kk graphs in the strongest model, the one where edges are required to be both x- and y-monotone. Thus in this strongest model, the result implies, for example, O(n)O(n), O(nlogn)O(n \log n) and O(n3/2)O(n^{3/2}) area bounds for bounded pathwidth graphs, bounded treewidth graphs and all classes of graphs that exclude a fixed minor, respectively. For the model with no restrictions on the monotonicity of the edges, stronger results can be achieved for some graph classes, for example an O(n)O(n) area bound for bounded treewidth graphs and O(nlog2n)O(n \log^2 n) bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Enskog Theory for Polydisperse Granular Mixtures. I. Navier-Stokes order Transport

    Full text link
    A hydrodynamic description for an ss-component mixture of inelastic, smooth hard disks (two dimensions) or spheres (three dimensions) is derived based on the revised Enskog theory for the single-particle velocity distribution functions. In this first portion of the two-part series, the macroscopic balance equations for mass, momentum, and energy are derived. Constitutive equations are calculated from exact expressions for the fluxes by a Chapman-Enskog expansion carried out to first order in spatial gradients, thereby resulting in a Navier-Stokes order theory. Within this context of small gradients, the theory is applicable to a wide range of restitution coefficients and densities. The resulting integral-differential equations for the zeroth- and first-order approximations of the distribution functions are given in exact form. An approximate solution to these equations is required for practical purposes in order to cast the constitutive quantities as algebraic functions of the macroscopic variables; this task is described in the companion paper.Comment: 36 pages, to be published in Phys. Rev.

    Statefinder -- a new geometrical diagnostic of dark energy

    Get PDF
    We introduce a new cosmological diagnostic pair {r,s}\lbrace r,s\rbrace called Statefinder. The Statefinder is dimensionless and, like the Hubble and deceleration parameters H(z)H(z) and q(z)q(z), is constructed from the scale factor of the Universe and its derivatives only. The parameter r(z)r(z) forms the next step in the hierarchy of geometrical cosmological parameters used to study the Universe after HH and qq, while the parameter s(z)s(z) is a linear combination of qq and rr chosen in such a way that it does not depend upon the dark energy density ΩX(z)\Omega_X(z). The Statefinder pair {r,s}\lbrace r,s\rbrace is algebraically related to the the dark energy pressure-to-energy ratio w=p/ϵw=p/\epsilon and its time derivative, and sheds light on the nature of dark energy/quintessence. Its properties allow to usefully differentiate between different forms of dark energy with constant and variable ww, including a cosmological constant (w=1w = -1). The Statefinder pair can be determined to very good accuracy from a SNAP type experiment.Comment: 7 pages, 3 figures. Final version to be published in JETP Lett., presentation shortened, references added and updated, consideration of brane cosmological models included, conclusions unchange

    Sfermion Pair Production in Polarized and Unpolarized γγ\gamma\gamma Collisions

    Full text link
    We calculate total and differential cross sections for the production of sfermion pairs in photon-photon collisions, including contributions from resolved photons and arbitrary photon polarization. Sfermion production in photon collisions depends only on the sfermion mass and charge. It is thus independent of the details of the SUSY breaking mechanism, but highly sensitive to the sfermion charge. We compare the total cross sections for bremsstrahlung, beamstrahlung, and laser backscattering photons to those in e+ee^+e^- annihilation. We find that the total cross section at a polarized photon collider is larger than the e+ee^+e^- annihilation cross section up to the kinematic limit of the photon collider.Comment: 19 pages, Latex, 18 (e)ps-figure

    On the topology of stationary black holes

    Get PDF
    We prove that the domain of outer communication of a stationary, globally hyperbolic spacetime satisfying the null energy condition must be simply connected. Under suitable additional hypotheses, this implies, in particular, that each connected component of a cross-section of the event horizon of a stationary black hole must have spherical topology.Comment: 7 pages, Late

    Bremsstrahlung corrections to the decay bsγb \to s \gamma

    Full text link
    We calculate the O(αs\alpha_s) gluon Bremsstrahlung corrections to the inclusive decay bsγb \rightarrow s \gamma, involving the full operator basis O^1\hat O_1 -- O^8\hat O_8. Confirming and extending earlier calculations of Ali and Greub, we give formulas for the total decay width as well as the perturbative photon spectrum, regarding the former as a necessary part of the forthcoming complete NLO analysis. We explore in detail the renormalization scale dependence of our results and find it considerably increased.Comment: 23 pages, LaTeX, uses epsf.sty and rotate.sty. 4 figures (uuencoded postscript) appended as seperate file. A complete postscript version may be obtained from URL ftp://feynman.t30.physik.tu-muenchen.de/pub/preprints/tum-93-95.ps.gz Final version as to appear in Physical Review D. Some minor errors corrected, without changes in the numerical results. One reference adde
    corecore