420 research outputs found

    Influenza d virus infection in herd of cattle, Japan

    Get PDF
    Citation: Murakami, S., Endoh, M., Kobayashi, T., Takenaka-Uema, A., Chambers, J. K., Uchida, K., . . . Horimoto, T. (2016). Influenza d virus infection in herd of cattle, Japan. Emerging Infectious Diseases, 22(8), 1517-1519. doi:10.3201/eid2208.160362Although the provisionally named influenza D virus was first isolated as an influenza C–like virus from pigs with respiratory illness in Oklahoma in 2011 (1,2), epidemiologic analyses suggested that cattle are major reservoirs of this virus (3) and the virus is potentially involved in the bovine respiratory disease complex. The high rates of illness and death related to this disease in feedlot cattle are caused by multiple factors, including several viral and bacterial co-infections. Influenza D viruses were detected in cattle and pigs with respiratory diseases (and in some healthy cattle) in China (4), France (5), Italy (6), among other countries, indicating their wide global geographic distribution. Although the influenza D virus, like the human influenza C virus, is known to use 9-O-acetylated sialic acids as the cell receptor (2,7), its zoonotic potential is undefined because of limited research (1,8). We report influenza D virus infection in a herd of cattle in Japan

    A single residue substitution in the receptor-binding domain of H5N1 hemagglutinin is critical for packaging into pseudotyped lentiviral particles

    Get PDF
    © 2012 Tang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Serological studies for influenza infection and vaccine response often involve microneutralization and hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including H5N1. We have previously characterized lentiviral particles pseudotyped with H5-HA (H5pp) and validated an H5pp-based assay as a safe alternative for high-throughput serological studies in BSL-2 facilities. Here we show that H5-HAs from different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed. Methodology/Findings: We have carried out mutational analysis to delineate the molecular determinants responsible for efficient packaging of HA from A/Cambodia/40808/2005 (H5Cam) and A/Anhui/1/2005 (H5Anh) into H5pp. Our results demonstrate that a single A134V mutation in the 130-loop of the receptor binding domain is sufficient to render H5Anh the ability to generate H5Anh-pp efficiently, whereas the reverse V134A mutation greatly hampers production of H5Cam-pp. Although protein expression in total cell lysates is similar for H5Anh and H5Cam, cell surface expression of H5Cam is detected at a significantly higher level than that of H5Anh. We further demonstrate by several independent lines of evidence that the behaviour of H5Anh can be explained by a stronger binding to sialic acid receptors implicating residue 134. Conclusions: We have identified a single A134V mutation as the molecular determinant in H5-HA for efficient incorporation into H5pp envelope and delineated the underlying mechanism. The reduced binding to sialic acid receptors as a result of the A134V mutation not only exerts a critical influence in pseudotyping efficiency of H5-HA, but has also an impact at the whole virus level. Because A134V substitution has been reported as a naturally occurring mutation in human host, our results may have implications for the understanding of human host adaptation of avian influenza H5N1 virusesThis work was supported by grants from the Research Fund for the Control of Infectious Diseases of Hong Kong (RFCID#08070972), the Area of Excellence Scheme of the University Grants Committee (grant AoE/M-12/-06 of the Hong Kong Special Administrative Region, China), the French Ministry of Health, and the RESPARI project of the Institut Pasteur International Network

    Co-administration of Favipiravir and the Remdesivir Metabolite GS-441524 Effectively Reduces SARS-CoV-2 Replication in the Lungs of the Syrian Hamster Model

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide since December 2019, causing coronavirus disease 2019 (COVID-19). Although vaccines for this virus have been developed rapidly, repurposing drugs approved to treat other diseases remains an invaluable treatment strategy. Here, we evaluated the inhibitory effects of drugs on SARS-CoV-2 replication in a hamster infection model and in in vitro assays. Favipiravir significantly suppressed virus replication in hamster lungs. Remdesivir inhibited virus replication in vitro, but was not effective in the hamster model. However, GS-441524, a metabolite of remdesivir, effectively suppressed virus replication in hamsters. Co-administration of favipiravir and GS-441524 more efficiently reduced virus load in hamster lungs than did single administration of either drug for both the prophylactic and therapeutic regimens; prophylactic co-administration also efficiently inhibited lung inflammation in the infected animals. Furthermore, pretreatment of hamsters with favipiravir and GS-441524 effectively protected them from virus transmission via respiratory droplets upon exposure to infected hamsters. Repurposing and co-administration of antiviral drugs may help combat COVID-19. IMPORTANCE During a pandemic, repurposing drugs that are approved for other diseases is a quick and realistic treatment option. In this study, we found that co-administration of favipiravir and the remdesivir metabolite GS-441524 more effectively blocked SARS-CoV-2 replication in the lungs of Syrian hamsters than either favipiravir or GS-441524 alone as part of a prophylactic or therapeutic regimen. Prophylactic co-administration also reduced the severity of lung inflammation. Moreover, co-administration of these drugs to naive hamsters efficiently protected them from airborne transmission of the virus from infected animals. Since both drugs are nucleotide analogs that interfere with the RNA-dependent RNA polymerases of many RNA viruses, these findings may also help encourage co-administration of antivirals to combat future pandemics

    VIGOR, an annotation program for small viral genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decrease in cost for sequencing and improvement in technologies has made it easier and more common for the re-sequencing of large genomes as well as parallel sequencing of small genomes. It is possible to completely sequence a small genome within days and this increases the number of publicly available genomes. Among the types of genomes being rapidly sequenced are those of microbial and viral genomes responsible for infectious diseases. However, accurate gene prediction is a challenge that persists for decoding a newly sequenced genome. Therefore, accurate and efficient gene prediction programs are highly desired for rapid and cost effective surveillance of RNA viruses through full genome sequencing.</p> <p>Results</p> <p>We have developed VIGOR (Viral Genome ORF Reader), a web application tool for gene prediction in influenza virus, rotavirus, rhinovirus and coronavirus subtypes. VIGOR detects protein coding regions based on sequence similarity searches and can accurately detect genome specific features such as frame shifts, overlapping genes, embedded genes, and can predict mature peptides within the context of a single polypeptide open reading frame. Genotyping capability for influenza and rotavirus is built into the program. We compared VIGOR to previously described gene prediction programs, ZCURVE_V, GeneMarkS and FLAN. The specificity and sensitivity of VIGOR are greater than 99% for the RNA viral genomes tested.</p> <p>Conclusions</p> <p>VIGOR is a user friendly web-based genome annotation program for five different viral agents, influenza, rotavirus, rhinovirus, coronavirus and SARS coronavirus. This is the first gene prediction program for rotavirus and rhinovirus for public access. VIGOR is able to accurately predict protein coding genes for the above five viral types and has the capability to assign function to the predicted open reading frames and genotype influenza virus. The prediction software was designed for performing high throughput annotation and closure validation in a post-sequencing production pipeline.</p

    Relating circulating thyroid hormone concentrations to serum interleukins-6 and -10 in association with non-thyroidal illnesses including chronic renal insufficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the possible role of cytokines including interleukins (IL) in systemic non-thyroidal illnesses' (NTI) pathogenesis and consequently the frequently associated alterations in thyroid hormone (TH) concentrations constituting the euthyroid sick syndrome (ESS), we aimed in this research to elucidate the possible relation between IL-6 & IL-10 and any documented ESS in a cohort of patients with NTI.</p> <p>Methods</p> <p>Sixty patients and twenty healthy volunteers were recruited. The patients were subdivided into three subgroups depending on their underlying NTI and included 20 patients with chronic renal insufficiency (CRI), congestive heart failure (CHF), and ICU patients with myocardial infarction (MI). Determination of the circulating serum levels of IL-6 and IL-10, thyroid stimulating hormone (TSH), as well as total T4 and T3 was carried out.</p> <p>Results</p> <p>In the whole group of patients, we detected a significantly lower T3 and T4 levels compared to control subjects (0.938 ± 0.477 vs 1.345 ± 0.44 nmol/L, p = 0.001 and 47.9 ± 28.41 vs 108 ± 19.49 nmol/L, p < 0.0001 respectively) while the TSH level was normal (1.08+0.518 μIU/L). Further, IL-6 was substantially higher above controls' levels (105.18 ± 72.01 vs 3.35 ± 1.18 ng/L, p < 0.00001) and correlated negatively with both T3 and T4 (r = -0.620, p < 0.0001 & -0.267, p < 0.001, respectively). Similarly was IL-10 level (74.13 ± 52.99 vs 2.64 ± 0.92 ng/ml, p < 0.00001) that correlated negatively with T3 (r = -0.512, p < 0.0001) but not T4. Interestingly, both interleukins correlated positively (r = 0.770, p = <0.001). Moreover, IL-6 (R<sup>2 </sup>= 0.338, p = 0.001) and not IL-10 was a predictor of low T3 levels with only a borderline significance for T4 (R<sup>2 </sup>= 0.082, p = 0.071).</p> <p>By subgroup analysis, the proportion of patients with subnormal T3, T4, and TSH levels was highest in the MI patients (70%, 70%, and 72%, respectively) who displayed the greatest IL-6 and IL-10 concentrations (192.5 ± 45.1 ng/L & 122.95 ± 46.1 ng/L, respectively) compared with CHF (82.95 ± 28.9 ng/L & 69.05 ± 44.0 ng/L, respectively) and CRI patients (40.05 ± 28.9 ng/L & 30.4 ± 10.6 ng/L, respectively). Surprisingly, CRI patients showed the least disturbance in IL-6 and IL-10 despite the lower levels of T3, T4, and TSH in a higher proportion of them compared to CHF patients (40%, 45%, & 26% vs 35%, 25%, & 18%, respectively).</p> <p>Conclusion</p> <p>the high prevalence of ESS we detected in NTI including CRI may be linked to IL-6 and IL-10 alterations. Further, perturbation of IL-6 and not IL-10 might be involved in ESS pathogenesis although it is not the only key player as suggested by our findings in CRI.</p
    • …
    corecore