224 research outputs found

    From nucleon-nucleon interaction matrix elements in momentum space to an operator representation

    Full text link
    Starting from the matrix elements of the nucleon-nucleon interaction in momentum space we present a method to derive an operator representation with a minimal set of operators that is required to provide an optimal description of the partial waves with low angular momentum. As a first application we use this method to obtain an operator representation for the Argonne potential transformed by means of the unitary correlation operator method and discuss the necessity of including momentum dependent operators. The resulting operator representation leads to the same results as the original momentum space matrix elements when applied to the two-nucleon system and various light nuclei. For applications in fermionic and antisymmetrized molecular dynamics, where an operator representation of a soft but realistic effective interaction is indispensable, a simplified version using a reduced set of operators is given

    Pairing in the Framework of the Unitary Correlation Operator Method (UCOM): Hartree-Fock-Bogoliubov Calculations

    Full text link
    In this first in a series of articles, we apply effective interactions derived by the Unitary Correlation Operator Method (UCOM) to the description of open-shell nuclei, using a self-consistent Hartree-Fock-Bogoliubov framework to account for pairing correlations. To disentangle the particle-hole and particle-particle channels and assess the pairing properties of \VUCOM, we consider hybrid calculations using the phenomenological Gogny D1S interaction to derive the particle-hole mean field. In the main part of this article, we perform calculations of the tin isotopic chain using \VUCOM in both the particle-hole and particle-particle channels. We study the interplay of both channels, and discuss the impact of non-central and non-local terms in realistic interactions as well as the frequently used restriction of pairing interactions to the 1S0{}^1S_0 partial wave. The treatment of the center-of-mass motion and its effect on theoretical pairing gaps is assessed independently of the used interactions.Comment: 14 pages, 10 figures, to appear in Phys. Rev. C, title modified accordingl

    Matrix Elements and Few-Body Calculations within the Unitary Correlation Operator Method

    Full text link
    We employ the Unitary Correlation Operator Method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction, and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges.Comment: 16 pages, 9 figures, using REVTEX

    Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of 48^{48}Ca

    Full text link
    Working with Hamiltonians from chiral effective field theory, we develop a novel framework for describing arbitrary deformed medium-mass nuclei by combining the in-medium similarity renormalization group with the generator coordinate method. The approach leverages the ability of the first method to capture dynamic correlations and the second to include collective correlations without violating symmetries. We use our scheme to compute the matrix element that governs the neutrinoless double beta decay of 48^{48}Ca to 48^{48}Ti, and find it to have the value 0.610.61, near or below the predictions of most phenomenological methods. The result opens the door to ab initio calculations of the matrix elements for the decay of heavier nuclei such as 76^{76}Ge, 130^{130}Te, and 136^{136}Xe.Comment: 6 pages, 4 figures and 1 table. supplementary material included. version to be publishe

    Detection of Early Stages of Myxobolus Cerebralis in Fin Clips from Rainbow Trout (Onchorynchus mykiss)

    Get PDF
    A nested polymerase chain reaction (PCR) assay was used to detect early stages of Myxobolus cerebralis in caudal and adipose fin samples from rainbow trout (RT). To determine sensitivity, groups of 10 RT were exposed to 2,000 M. cerebralis triactinomyxons/fish for 1 hour at 15 degrees C and subsequently moved to clean recirculating water. Fish were held for 2 and 6 hours and 1, 2, 3, 5, 7, 10, 30, and 60 days before sampling by nonlethal fin biopsy. Nested PCR performed on fin clips showed that M. cerebralis DNA was detected in caudal fin tissue in 100% of fish up to 5 days postexposure. At days 7 and 10 postexposure, 80% of fish were positive, and at 60 days postexposure, 60% of fish were positive using this technique. Conversely, testing on adipose fin clips proved less sensitive, as positive fish dropped from 80% at day 7 to below 20% at day 10 postinfection. Since detection of M. cerebralis infection using caudal fin samples coupled with nested PCR is an effective method for detection of early parasite stages, use of this technique provides for accurate, nonlethal testing

    Non-observable nature of the nuclear shell structure. Meaning, illustrations and consequences

    Full text link
    The concept of single-nucleon shells constitutes a basic pillar of our understanding of nuclear structure. Effective single-particle energies (ESPEs) introduced by French and Baranger represent the most appropriate tool to relate many-body observables to a single-nucleon shell structure. As briefly discussed in [T. Duguet, G. Hagen, Phys. Rev. C {\bf 85}, 034330 (2012)], the dependence of ESPEs on one-nucleon transfer probability matrices makes them purely theoretical quantities that "run" with the non-observable resolution scale λ\lambda employed in the calculation. Given that ESPEs provide a way to interpret the many-body problem in terms of simpler theoretical ingredients, the goal is to specify the terms, i.e. the exact sense and conditions, in which this interpretation can be conducted meaningfully. State-of-the-art multi-reference in-medium similarity renormalization group and self-consistent Gorkov Green's function many-body calculations are employed to corroborate the formal analysis. This is done by comparing the behavior of several observables and of non-observable ESPEs (and spectroscopic factors) under (quasi) unitary similarity renormalization group transformations of the Hamiltonian parameterized by the resolution scale λ\lambda. The non-observable nature of the nuclear shell structure, i.e. the fact that it constitutes an intrinsically theoretical object with no counterpart in the empirical world, must be recognized and assimilated. Eventually, practitioners can refer to nuclear shells and spectroscopic factors in their analyses of nuclear phenomena if, and only if, they use consistent structure and reaction theoretical schemes based on a fixed resolution scale they have agreed on prior to performing their analysis and comparisons.Comment: 14 pages, 9 figures, accepted for publication in Physical Review

    Hartree-Fock and Many-Body Perturbation Theory with Correlated Realistic NN-Interactions

    Full text link
    We employ correlated realistic nucleon-nucleon interactions for the description of nuclear ground states throughout the nuclear chart within the Hartree-Fock approximation. The crucial short-range central and tensor correlations, which are induced by the realistic interaction and cannot be described by the Hartree-Fock many-body state itself, are included explicitly by a state-independent unitary transformation in the framework of the unitary correlation operator method (UCOM). Using the correlated realistic interaction V_UCOM resulting from the Argonne V18 potential, bound nuclei are obtained already on the Hartree-Fock level. However, the binding energies are smaller than the experimental values because long-range correlations have not been accounted for. Their inclusion by means of many-body perturbation theory leads to a remarkable agreement with experimental binding energies over the whole mass range from He-4 to Pb-208, even far off the valley of stability. The observed perturbative character of the residual long-range correlations and the apparently small net effect of three-body forces provides promising perspectives for a unified nuclear structure description.Comment: 14 pages, 8 figures, 3 tables, using REVTEX

    Rooting the EDF method into the ab initio framework. PGCM-PT formalism based on MR-IMSRG pre-processed Hamiltonians

    Full text link
    Recently, ab initio techniques have been successfully connected to the traditional valence-space shell model. In doing so, they can either explicitly provide ab initio shell-model effective Hamiltonians or constrain the construction of empirical ones. In the present work, the possibility to follow a similar path for the nuclear energy density functional (EDF) method is analyzed. For this connection to be actualized, two theoretical techniques are instrumental: the recently proposed ab initio PGCM-PT many-body formalism and the MR-IMSRG pre-processing of the nuclear Hamiltonian. Based on both formal arguments and numerical results, possible new lines of research are briefly discussed, namely to compute ab initio EDF effective Hamiltonians at low computational cost, to constrain empirical ones or to produce them directly via an effective field theory that remains to be invented.Comment: 20 pages, 7 figure
    • …
    corecore