30 research outputs found

    Perturbative Effective Theory in an Oscillator Basis?

    Full text link
    The effective interaction/operator problem in nuclear physics is believed to be highly nonperturbative, requiring extended high-momentum spaces for accurate solution. We trace this to difficulties that arise at both short and long distances when the included space is defined in terms of a basis of harmonic oscillator Slater determinants. We show, in the simplest case of the deuteron, that both difficulties can be circumvented, yielding highly perturbative results in the potential even for modest (~6hw) included spaces.Comment: 10 pages, 4 figure

    Comparison of the Effective Interaction to Various Orders in Different Mass Regions

    Full text link
    The convergence of the perturbation expansion for the effective interaction to be used in shell-model calculations is investigated as function of the mass number AA, from A=4A=4 to A=208A=208. As the mass number increases, there are more intermediate states to sum over in each higher-order diagram which contributes to the effective interaction. Together with the fact that the energy denominators in each diagram are smaller for larger mass numbers, these two effects could largely enhance higher-order contributions to the effective interaction, thereby deteriorating the order-by-order convergence of the effective interaction. This effect is counterbalanced by the short range of the nucleon-nucleon interaction, which implies that its matrix elements are weaker for valence single-particle states in ``large'' nuclei with large mass number as compared to those in light nuclei. These effects are examined by comparing various mean values of the matrix elements. It turns out that the contributions from higher-order terms remain fairly stable as the mass number increases from A=4A=4 to A=208A=208. The implications for nuclear structure calculations are discussed.Comment: Revtex, 20 pages, 1 figure not include

    Renormalisation and fixed points in Hilbert Space

    Full text link
    The energies of low-lying bound states of a microscopic quantum many-body system of particles can be worked out in a reduced Hilbert space. We present here and test a specific non-perturbative truncation procedure. We also show that real exceptional points which may be present in the spectrum can be identified as fixed points of coupling constants in the truncation procedure.Comment: 4 pages, 1 tabl

    Comparison of techniques for computing shell-model effective operators

    Get PDF
    Different techniques for calculating effective operators within the framework of the shell model using the same effective interaction and the same excitation spaces are presented. Starting with the large-basis no-core approach, we compare the time-honored perturbation-expansion approach and a model-space truncation approach. Results for the electric quadrupole and magnetic dipole operators are presented for 6^6Li. The convergence trends and dependence of the effective operators on differing excitation spaces and Pauli Q-operators is studied. In addition, the dependence of the electric-quadrupole effective charge on the harmonic-oscillator frequency and the mass number, for A=5,6, is investigated in the model-space truncation approach.Comment: 18 pages. REVTEX. 4 PostScript figure

    Moyal products -- a new perspective on quasi-hermitian quantum mechanics

    Full text link
    The rationale for introducing non-hermitian Hamiltonians and other observables is reviewed and open issues identified. We present a new approach based on Moyal products to compute the metric for quasi-hermitian systems. This approach is not only an efficient method of computation, but also suggests a new perspective on quasi-hermitian quantum mechanics which invites further exploration. In particular, we present some first results which link the Berry connection and curvature to non-perturbative properties and the metric.Comment: 14 pages. Submitted to J Phys A special issue on The Physics of Non-Hermitian Operator
    corecore