180 research outputs found

    Ebstein’s anomaly may be caused by mutations in the sarcomere protein gene MYH7

    Get PDF
    Ebstein's anomaly is a rare congenital heart malformation characterised by adherence of the septal and posterior leaflets of the tricuspid valve to the underlying myocardium. Associated abnormalities of left ventricular morphology and function including left ventricular noncompaction (LVNC) have been observed. An association between Ebstein's anomaly with LVNC and mutations in the sarcomeric protein gene MYH7, encoding β-myosin heavy chain, has been shown by recent studies. This might represent a specific subtype of Ebstein's anomaly with a Mendelian inheritance pattern. In this review we discuss the association of MYH7 mutations with Ebstein's anomaly and LVNC and its implications for the clinical care for patients and their family members.Congenital Heart Diseas

    Plasma therapy in atypical haemolytic uremic syndrome: lessons from a family with a factor H mutation

    Get PDF
    Whilst randomised control trials are undoubtedly the best way to demonstrate whether plasma exchange or infusion alone is the best first-line treatment for patients with atypical haemolytic uremic syndrome (aHUS), individual case reports can provide valuable information. To that effect, we have had the unique opportunity to follow over a 10-year period three sisters with aHUS associated with a factor H mutation (CFH). Two of the sisters are monozygotic twins. A similar natural evolution and response to treatment would be expected for the three patients, as they all presented with the same at-risk polymorphisms for CFH and CD46 and no identifiable mutation in either CD46 or CFI. Our report of different modalities of treatment of the initial episode and of three transplantations and relapses in the transplant in two of them, strongly suggest that intensive plasma exchange, both acutely and prophylactically, can maintain the long-term function of both native kidneys and allografts. In our experience, the success of plasma therapy is dependent on the use of plasma exchange as opposed to plasma infusion alone, the prolongation of daily plasma exchange after normalisation of haematological parameters followed by prophylactic plasma exchange, the use of prophylactic plasma exchange prior to transplantation and the use of prophylactic plasma exchange at least once a week posttransplant with immediate intensification of treatment if there are any signs of recurrence

    What’s retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151310/1/dvg23308.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151310/2/dvg23308_am.pd

    Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility

    Get PDF
    Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10-8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10-7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ~146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10-7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10-4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE

    Musculoskeletal Response to Whole-Body Vibration During Fracture Healing in Intact and Ovariectomized Rats

    Get PDF
    This study investigated the effect of vibration on bone healing and muscle in intact and ovariectomized rats. Thirty ovariectomized (at 3 months of age) and 30 intact 5-month old female Sprague-Dawley rats underwent bilateral metaphyseal osteotomy of tibia. Five days later, half of the ovariectomized and of the intact rats were exposed to whole-body vertical vibration (90 Hz, 0.5 mm, 4 × g acceleration) for 15 min twice a day during 30 days. The other animals did not undergo vibration. After decapitation of rats, one tibia was used for computed tomographic, biomechanical, and histological analyses; the other was used for gene expression analyses of alkaline phosphatase (Alp), osteocalcin (Oc), tartrate-resistant acid phosphatase 1, and insulinlike growth factor 1. Serum Alp and Oc were measured. Mitochondrial activity, fiber area and distribution, and capillary densities were analyzed in M. gastrocnemius and M. longissimus. We found that vibration had no effect on body weight and food intake, but it improved cortical and callus densities (97 vs. 99%, 72 vs. 81%), trabecular structure (9 vs. 14 trabecular nodes), blood supply (1.7 vs. 2.1 capillaries/fiber), and oxidative metabolism (17 vs. 23 pmol O2/s/mg) in ovariectomized rats. Vibration generally increased muscle fiber size. Tibia biomechanical properties were diminished after vibration. Oc gene expression was higher in vibrated rats. Serum Alp was increased in ovariectomized rats. In ovariectomized rats, vibration resulted in an earlier bridging; in intact rats, callus bridging occurred later after vibration. The chosen vibration regimen (90 Hz, 0.5 mm, 4 × g acceleration, 15 min twice a day) was effective in improving musculoskeletal tissues in ovariectomized rats but was not optimal for fracture healing

    A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date.</p> <p>Methods</p> <p>We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents.</p> <p>Results</p> <p>Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial <it>de novo </it>1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping.</p> <p>Conclusion</p> <p>The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors.</p
    corecore