477 research outputs found
Norm-dependent Random Matrix Ensembles in External Field and Supersymmetry
The class of norm-dependent Random Matrix Ensembles is studied in the
presence of an external field. The probability density in those ensembles
depends on the trace of the squared random matrices, but is otherwise
arbitrary. An exact mapping to superspace is performed. A transformation
formula is derived which gives the probability density in superspace as a
single integral over the probability density in ordinary space. This is done
for orthogonal, unitary and symplectic symmetry. In the case of unitary
symmetry, some explicit results for the correlation functions are derived.Comment: 19 page
Arbitrary Rotation Invariant Random Matrix Ensembles and Supersymmetry
We generalize the supersymmetry method in Random Matrix Theory to arbitrary
rotation invariant ensembles. Our exact approach further extends a previous
contribution in which we constructed a supersymmetric representation for the
class of norm-dependent Random Matrix Ensembles. Here, we derive a
supersymmetric formulation under very general circumstances. A projector is
identified that provides the mapping of the probability density from ordinary
to superspace. Furthermore, it is demonstrated that setting up the theory in
Fourier superspace has considerable advantages. General and exact expressions
for the correlation functions are given. We also show how the use of hyperbolic
symmetry can be circumvented in the present context in which the non-linear
sigma model is not used. We construct exact supersymmetric integral
representations of the correlation functions for arbitrary positions of the
imaginary increments in the Green functions.Comment: 36 page
The k-Point Random Matrix Kernels Obtained from One-Point Supermatrix Models
The k-point correlation functions of the Gaussian Random Matrix Ensembles are
certain determinants of functions which depend on only two arguments. They are
referred to as kernels, since they are the building blocks of all correlations.
We show that the kernels are obtained, for arbitrary level number, directly
from supermatrix models for one-point functions. More precisely, the generating
functions of the one-point functions are equivalent to the kernels. This is
surprising, because it implies that already the one-point generating function
holds essential information about the k-point correlations. This also
establishes a link to the averaged ratios of spectral determinants, i.e. of
characteristic polynomials
Invariant Manifolds and Collective Coordinates
We introduce suitable coordinate systems for interacting many-body systems
with invariant manifolds. These are Cartesian in coordinate and momentum space
and chosen such that several components are identically zero for motion on the
invariant manifold. In this sense these coordinates are collective. We make a
connection to Zickendraht's collective coordinates and present certain
configurations of few-body systems where rotations and vibrations decouple from
single-particle motion. These configurations do not depend on details of the
interaction.Comment: 15 pages, 2 EPS-figures, uses psfig.st
Stochastic field theory for a Dirac particle propagating in gauge field disorder
Recent theoretical and numerical developments show analogies between quantum
chromodynamics (QCD) and disordered systems in condensed matter physics. We
study the spectral fluctuations of a Dirac particle propagating in a finite
four dimensional box in the presence of gauge fields. We construct a model
which combines Efetov's approach to disordered systems with the principles of
chiral symmetry and QCD. To this end, the gauge fields are replaced with a
stochastic white noise potential, the gauge field disorder. Effective
supersymmetric non-linear sigma-models are obtained. Spontaneous breaking of
supersymmetry is found. We rigorously derive the equivalent of the Thouless
energy in QCD. Connections to other low-energy effective theories, in
particular the Nambu-Jona-Lasinio model and chiral perturbation theory, are
found.Comment: 4 pages, 1 figur
Equivalent of a Thouless energy in lattice QCD Dirac spectra
Random matrix theory (RMT) is a powerful statistical tool to model spectral
fluctuations. In addition, RMT provides efficient means to separate different
scales in spectra. Recently RMT has found application in quantum chromodynamics
(QCD). In mesoscopic physics, the Thouless energy sets the universal scale for
which RMT applies. We try to identify the equivalent of a Thouless energy in
complete spectra of the QCD Dirac operator with staggered fermions and
lattice gauge fields. Comparing lattice data with RMT predictions we
find deviations which allow us to give an estimate for this scale.Comment: LATTICE99 (theor. devel.), 3 pages, 4 figure
Transition from Poisson to gaussian unitary statistics: The two-point correlation function
We consider the Rosenzweig-Porter model of random matrix which interpolates
between Poisson and gaussian unitary statistics and compute exactly the
two-point correlation function. Asymptotic formulas for this function are given
near the Poisson and gaussian limit.Comment: 19 pages, no figure
- …