291 research outputs found
A New Chytridiomycete Fungus Intermixed with Crustacean Resting Eggs in a 407-Million-Year-Old Continental Freshwater Environment
Copyright: © 2016 Strullu-Derrien et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Magnetic Phase Transition of the Perovskite-type Ti Oxides
Properties and mechanism of the magnetic phase transition of the
perovskite-type Ti oxides, which is driven by the Ti-O-Ti bond angle
distortion, are studied theoretically by using the effective spin and
pseudo-spin Hamiltonian with strong Coulomb repulsion. It is shown that the
A-type antiferromagnetic(AFM(A)) to ferromagnetic(FM) phase transition occurs
as the Ti-O-Ti bond angle is decreased. Through this phase transition, the
orbital state is hardly changed so that the spin-exchange coupling along the
c-axis changes nearly continuously from positive to negative and takes
approximately zero at the phase boundary. The resultant strong
two-dimensionality in the spin coupling causes a rapid suppression of the
critical temperature as is observed experimentally.Comment: 9 pages, 5 figure
Free Expansion of a Weakly-interacting Dipolar Fermi Gas
We theoretically investigate a polarized dipolar Fermi gas in free expansion.
The inter-particle dipolar interaction deforms phase-space distribution in trap
and also in the expansion. We exactly predict the minimal quadrupole
deformation in the expansion for the high-temperature Maxwell-Boltzmann and
zero-temperature Thomas-Fermi gases in the Hartree-Fock and Landau-Vlasov
approaches. In conclusion, we provide a proper approach to develop the
time-of-flight method for the weakly-interacting dipolar Fermi gas and also
reveal a scaling law associated with the Liouville's theorem in the long-time
behaviors of the both gases
Magnetic and Orbital States and Their Phase Transition of the Perovskite-Type Ti Oxides: Strong Coupling Approach
The properties and mechanism of the magnetic phase transition of the
perovskite-type Ti oxides, which is driven by the Ti-O-Ti bond angle
distortion, are studied theoretically by using the effective spin and
pseudospin Hamiltonian with strong Coulomb repulsion. It is shown that the
A-type antiferromagnetic (AFM(A)) to ferromagnetic (FM) phase transition occurs
as the Ti-O-Ti bond angle is decreased. Through this phase transition, the
orbital state changes only little whereas the spin-exchange coupling along the
c-axis is expected to change from positive to negative nearly continuously and
approaches zero at the phase boundary. The resultant strong two-dimensionality
in the spin coupling causes rapid suppression of the critical temperature, as
observed experimentally. It may induce large quantum fluctuations in this
region.Comment: 13 pages, 15 figure
Origin of G-type Antiferromagnetism and Orbital-Spin Structures in
The possibility of the distortion of octahedra is
examined theoretically in order to understand the origin of the G-type
antiferromagnetism (AFM(G)) and experimentally observed puzzling properties of
. By utilizing an effective spin and pseudospin Hamiltonian with
the strong Coulomb repulsion, it is shown that AFM(G) state is stabilized
through the lift of the -orbital degeneracy accompanied by a tiny
-distortion . The estimated spin-exchange interaction is in agreement
with that obtained by the neutron scattering. Moreover, the level-splitting
energy due to the distortion can be considerably larger than the spin-orbit
interaction even when the distortion becomes smaller than the detectable limit
under the available experimental resolution. This suggests that the orbital
momentum is fully quenched and the relativistic spin-orbit interaction is not
effective in this system, in agreement with recent neutron-scattering
experiment.Comment: 9 pages, 6 figure
Novel Mechanism of Supersolid of Ultracold Polar Molecules in Optical Lattices
We study the checkerboard supersolid of the hard-core Bose-Hubbard model with
the dipole-dipole interaction. This supersolid is different from all other
supersolids found in lattice models in the sense that superflow paths through
which interstitials or vacancies can hop freely are absent in the crystal. By
focusing on repulsive interactions between interstitials, we reveal that the
long-range tail of the dipole-dipole interaction have the role of increasing
the energy cost of domain wall formations. This effect produces the supersolid
by the second-order hopping process of defects. We also perform exact quantum
Monte Carlo simulations and observe a novel double peak structure in the
momentum distribution of bosons, which is a clear evidence for supersolid. This
can be measured by the time-of-flight experiment in optical lattice systems
Ferromagnetism in a lattice of Bose condensates
We show that an ensemble of spinor Bose-Einstein condensates confined in a
one dimensional optical lattice can undergo a ferromagnetic phase transition
and spontaneous magnetization arises due to the magnetic dipole-dipole
interaction. This phenomenon is analogous to ferromagnetism in solid state
physics, but occurs with bosons instead of fermions.Comment: 4 pages, 2 figure
Magnetism in a lattice of spinor Bose condensates
We study the ground state magnetic properties of ferromagnetic spinor
Bose-Einstein condensates confined in a deep optical lattices. In the Mott
insulator regime, the ``mini-condensates'' at each lattice site behave as
mesoscopic spin magnets that can interact with neighboring sites through both
the static magnetic dipolar interaction and the light-induced dipolar
interaction. We show that such an array of spin magnets can undergo a
ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar
interaction depending on the dimension of the confining optical lattice. The
ground-state spin configurations and related magnetic properties are
investigated in detail
Theory of orbital state and spin interactions in ferromagnetic titanates
A spin-orbital superexchange Hamiltonian in a Mott insulator with
orbital degeneracy is investigated. More specifically, we focus on a spin
ferromagnetic state of the model and study a collective behavior of orbital
angular momentum. Orbital order in the model occurs in a nontrivial way -- it
is stabilized exclusively by quantum effects through the order-from-disorder
mechanism. Several energetically equivalent orbital orderings are identified.
Some of them are specified by a quadrupole ordering and have no unquenched
angular momentum at low energy. Other states correspond to a noncollinear
ordering of the orbital angular momentum and show the magnetic Bragg peaks at
specific positions. Order parameters are unusually small because of strong
quantum fluctuations. Orbital contribution to the resonant x-ray scattering is
discussed. The dynamical magnetic structure factor in different ordered states
is calculated. Predictions made should help to observe elementary excitations
of orbitals and also to identify the type of the orbital order in ferromagnetic
titanates. Including further a relativistic spin-orbital coupling, we derive an
effective low-energy spin Hamiltonian and calculate a spin-wave spectrum, which
is in good agreement with recent experimental observations in YTiO.Comment: 25 pages, 17 figure
Spin Dynamics and Orbital State in LaTiO_3
A neutron scattering study of the Mott-Hubbard insulator LaTiO
(T K) reveals a spin wave spectrum that is well described by a
nearest-neighbor superexchange constant meV and a small
Dzyaloshinskii-Moriya interaction ( meV). The nearly isotropic spin wave
spectrum is surprising in view of the absence of a static Jahn-Teller
distortion that could quench the orbital angular momentum, and it may indicate
strong orbital fluctuations. A resonant x-ray scattering study has uncovered no
evidence of orbital order in LaTiO.Comment: final version, Phys. Rev. Lett. 85, 3946 (2000
- …