56 research outputs found

    Nanopore structures of isolated kerogen and bulk shale in Bakken Formation

    Get PDF
    Pores that exist within the organic matter can affect the total pore system of bulk shale samples and, as a result, need to be studied and analyzed carefully. In this study, samples from the Bakken Formation, in conjunction with the kerogen that was isolated from them, were studied and compared through a set of analytical techniques: X-ray diffraction (XRD), Rock-Eval pyrolysis, Fourier Transform infrared spectroscopy (FTIR), and gas adsorption (CO 2 and N 2 ). The results can be summarized as follows: 1) quartz and clays are two major minerals in the Bakken samples; 2) the samples have rich organic matter content with TOC greater than 10 wt%; 3) kerogen is marine type II; 4) gas adsorption showed that isolated kerogen compared to the bulk sample has larger micropore volume and surface area, meso- and macropore volume, and Brunauer–Emmett–Teller (BET) surface area; 5) deconvolution of pore size distribution (PSD) curves demonstrated that pores in the isolated kerogen could be separated into five distinct clusters, whereas bulk shale samples exhibited one additional pore cluster with an average pore size of 4 nm hosted in the minerals. The comparison of PSD curves obtained from isolated kerogen and bulk shale samples proved that most of the micropores in the shale are hosted within the organic matter while the mesopores with a size ranging between 2 and 10 nm are mainly hosted by minerals. The overall results demonstrated that organic matter-hosted pores make a significant contribution to the total porosity of the Bakken shale samples

    Nanoscale pore structure characterization of the Bakken shale in the USA

    No full text
    Understanding the pore structures of unconventional reservoirs such as shale can assist in estimating their elastic transport and storage properties, thus enhancing the hydrocarbon recovery from such massive resources. Bakken Shale Formation is one of the largest shale oil reserves worldwide located in the Williston Basin, North America. In this paper, we collected a few samples from the Bakken and characterized their properties by using complementary methods including X-ray diffraction (XRD), N 2 and CO 2 adsorption, and Rock-Eval pyrolysis. The results showed that all range of pore sizes: micro ( < 2 nm), meso (2–50 nm) and macro-pores ( > 50 nm) exist in the Bakken shale samples. Meso-pores and macro-pores are the main contributors to the porosity for these samples. Compared with the Middle Bakken, samples from Upper and Lower Bakken own more micro pore volumes. Fractal dimension analysis was performed on the pore size distribution data, and the results indicated more complex po re structures for samples taken from the Upper and Lower Bakken shales than the Middle Bakken. Furthermore, the deconvolution of the pore distribution function from the combination of N 2 and CO 2 adsorption results proved that five typical pore size families exist in the Bakken shale samples: one micro-pore, one macro-pore and three meso-pore size families. The studies on the correlations between the compositions and the pore structures showed that mostly feldspar and pyrite affect the total pore volume of samples from Middle Bakken Formation whereas clay dominates the total pore volume of samples from Upper/Lower Bakken Formation. TOC and clay content are the major contributors to the micro-pore size family in the Upper/Lower Bakken. Also, it was observed that the increase of hard minerals could increase the percentage of macro-pore family in the Middle Bakken Formation
    • …
    corecore