1,557,286 research outputs found

    The mathematical basis for deterministic quantum mechanics

    Full text link
    If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes is further elucidated, as it follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.Comment: 17 pages, 3 figures. Minor corrections, comments and explanations adde

    Winding Solutions for the two Particle System in 2+1 Gravity

    Get PDF
    Using a PASCAL program to follow the evolution of two gravitating particles in 2+1 dimensions we find solutions in which the particles wind around one another indefinitely. As their center of mass moves `tachyonic' they form a Gott-pair. To avoid unphysical boundary conditions we consider a large but closed universe. After the particles have evolved for some time their momenta have grown very large. In this limit we quantize the model and find that both the relevant configuration variable and its conjugate momentum become discrete.Comment: 15 pages Latex, 4 eps figure

    Pauli-Lubanski scalar in the Polygon Approach to 2+1-Dimensional Gravity

    Full text link
    In this paper we derive an expression for the conserved Pauli-Lubanski scalar in 't Hooft's polygon approach to 2+1-dimensional gravity coupled to point particles. We find that it is represented by an extra spatial shift Δ\Delta in addition to the usual identification rule (being a rotation over the cut). For two particles this invariant is expressed in terms of 't Hooft's phase-space variables and we check its classical limit.Comment: Some errors are corrected and a new introduction and discussion are added. 6 pages Latex, 4 eps-figure

    Magnetophoresis of Tagged Polymers

    Full text link
    We present quantitative results for the drift velocity of a polymer in a gel if a force (e.g. through an electric or magnetic field) acts on a tag, attached to one of its ends. This is done by introducing a modification of the Rubinstein-Duke model for electrophoresis of DNA. We analyze this modified model with exact and Monte Carlo calculations. Tagged magnetophoresis does not show band collapse, a phenomenon that limits the applicability of traditional electrophoresis to short polymers.Comment: 10 pages revtex, 3 PostScript figure

    TransPlanckian Particles and the Quantization of Time

    Get PDF
    Trans-Planckian particles are elementary particles accelerated such that their energies surpass the Planck value. There are several reasons to believe that trans-Planckian particles do not represent independent degrees of freedom in Hilbert space, but they are controlled by the cis-Planckian particles. A way to learn more about the mechanisms at work here, is to study black hole horizons, starting from the scattering matrix Ansatz. By compactifying one of the three physical spacial dimensions, the scattering matrix Ansatz can be exploited more efficiently than before. The algebra of operators on a black hole horizon allows for a few distinct representations. It is found that this horizon can be seen as being built up from string bits with unit lengths, each of which being described by a representation of the SO(2,1) Lorentz group. We then demonstrate how the holographic principle works for this case, by constructing the operators corresponding to a field in space-time. The parameter t turns out to be quantized in Planckian units, divided by the period R of the compactified dimension.Comment: 12 pages plain tex, 1 figur

    On the boundary Ising model with disorder operators

    Full text link
    We extend the well-known method of calculating bulk correlation functions of the conformal Ising model via bosonisation to situations with boundaries. Oshikawa and Affleck have found the boundary states of two decoupled Ising models in terms of the orbifold of a single free boson compactified on a circle of radius r=1; we adapt their results to include disorder operators. Using these boundary states we calculate the expectation value of a single disorder field on a cylinder with free boundary conditions and show that in the appropriate limits we recover the standard and frustrated partition functions. We also show how to calculate Ising correlation functions on the upper half plane.Comment: 12 pages, Latex2e, 6 figure

    A Chiral SU(N) Gauge Theory Planar Equivalent to Super-Yang-Mills

    Full text link
    We consider the dynamics of a strongly coupled SU(N) chiral gauge theory. By using its large-N equivalence with N=1 super-Yang-Mills theory we find the vacuum structure of the former. We also consider its finite-N dynamics.Comment: 10 pages, Latex. 1 eps figur

    Doubly excited ferromagnetic spin-chain as a pair of coupled kicked rotors

    Full text link
    We show that the dynamics of a doubly-excited 1D Heisenberg ferromagnetic chain, subject to short pulses from a parabolic magnetic field may be analyzed as a pair of quantum kicked rotors. By focusing on the two-magnon dynamics in the kicked XXZ model we investigate how the anisotropy parameter - which controls the strength of the magnon-magnon interaction - changes the nature of the coupling between the two "image" coupled Kicked Rotors. We investigate quantum state transfer possibilities and show that one may control whether the spin excitations are transmitted together, or separate from each other.Comment: 8 pages, 4 figures; extended appendix and corrected typo
    • …
    corecore