4,756 research outputs found
Separation of two bodies in space. A machine programmed analysis using the Lagrange equations and Eulerian angles
Fortran computer program and Lagrangian motion equations for separation analysis of two bodies in spac
Vortices and confinement at weak coupling
We discuss the physical picture of thick vortices as the mechanism
responsible for confinement at arbitrarily weak coupling in SU(2) gauge theory.
By introducing appropriate variables on the lattice we distinguish between
thin, thick and `hybrid' vortices, the latter involving Z(2) monopole loop
boundaries. We present numerical lattice simulation results that demonstrate
that the full SU(2) string tension at weak coupling arises from the presence of
vortices linked to the Wilson loop. Conversely, excluding linked vortices
eliminates the confining potential. The numerical results are stable under
alternate choice of lattice action as well as a smoothing procedure which
removes short distance fluctuations while preserving long distance physics.Comment: 21 pages, LaTe
Neural multigrid for gauge theories and other disordered systems
We present evidence that multigrid works for wave equations in disordered
systems, e.g. in the presence of gauge fields, no matter how strong the
disorder, but one needs to introduce a "neural computations" point of view into
large scale simulations: First, the system must learn how to do the simulations
efficiently, then do the simulation (fast).
The method can also be used to provide smooth interpolation kernels which are
needed in multigrid Monte Carlo updates.Comment: 9 pages [2 figures appended in PostScript format], preprint DESY
92-126, Sept. 199
Separation of two bodies in space
Computer program analyzes the motion of two rigid bodies in space, separating as a result of any one, or a combination of, the following mechanisms - springs with ball ends, springs with one end guided, pyrotechnics, rockets, cold-gas jets, air pistons, and Coulomb drag
Four Dimensional CFT Models with Rational Correlation Functions
Recently established rationality of correlation functions in a globally
conformal invariant quantum field theory satisfying Wightman axioms is used to
construct a family of soluble models in 4-dimensional Minkowski space-time. We
consider in detail a model of a neutral scalar field of dimension 2. It
depends on a positive real parameter c, an analogue of the Virasoro central
charge, and admits for all (finite) c an infinite number of conserved symmetric
tensor currents. The operator product algebra of is shown to coincide
with a simpler one, generated by a bilocal scalar field of
dimension (1,1). The modes of V together with the unit operator span an
infinite dimensional Lie algebra whose vacuum (i.e. zero energy lowest
weight) representations only depend on the central charge c. Wightman
positivity (i.e. unitarity of the representations of ) is proven to be
equivalent to .Comment: 28 pages, LATEX, amsfonts, latexsym. Proposition 2.3, and Conjecture
in Sec. 6 are revised. Minor errors are correcte
Theoretical Analysis of Acceptance Rates in Multigrid Monte Carlo
We analyze the kinematics of multigrid Monte Carlo algorithms by
investigating acceptance rates for nonlocal Metropolis updates. With the help
of a simple criterion we can decide whether or not a multigrid algorithm will
have a chance to overcome critial slowing down for a given model. Our method is
introduced in the context of spin models. A multigrid Monte Carlo procedure for
nonabelian lattice gauge theory is described, and its kinematics is analyzed in
detail.Comment: 7 pages, no figures, (talk at LATTICE 92 in Amsterdam
Polymer Dissolution Model: An Energy Adaptation Of The Critical Ionization Theory
The current scale of features size in the microelectronics industry has reached the point where molecular level interactions affect process fidelity and produce excursions from the continuum world like line edge roughness (LER). Here we present a 3D molecular level model based on the adaptation of the critical ionization (CI) theory using a fundamental interaction energy approach. The model asserts that it is the favorable interaction between the ionized part of the polymer and the developer solution which renders the polymer soluble. Dynamic Monte Carlo methods were used in the current model to study the polymer dissolution phenomenon. The surface ionization was captured by employing an electric double layer at the interface, and polymer motion was simulated using the Metropolis algorithm. The approximated interaction parameters, for different species in the system, were obtained experimentally and used to calibrate the simulated dissolution rate response to polymer molecular weight and developer concentration. The predicted response is in good agreement with experimental dissolution rate data. The simulation results support the premise of the CI theory and provide an insight into the CI model from a new prospective. This model may provide a means to study the contribution of development to LER and other related defects based on molecular level interactions between distinct components in the polymer and the developer.Chemical Engineerin
Effective Field Theories
Effective field theories encode the predictions of a quantum field theory at
low energy. The effective theory has a fairly low ultraviolet cutoff. As a
result, loop corrections are small, at least if the effective action contains a
term which is quadratic in the fields, and physical predictions can be read
straight from the effective Lagrangean.
Methods will be discussed how to compute an effective low energy action from
a given fundamental action, either analytically or numerically, or by a
combination of both methods. Basically,the idea is to integrate out the high
frequency components of fields. This requires the choice of a "blockspin",i.e.
the specification of a low frequency field as a function of the fundamental
fields. These blockspins will be the fields of the effective field theory. The
blockspin need not be a field of the same type as one of the fundamental
fields, and it may be composite. Special features of blockspins in nonabelian
gauge theories will be discussed in some detail.
In analytical work and in multigrid updating schemes one needs interpolation
kernels \A from coarse to fine grid in addition to the averaging kernels
which determines the blockspin. A neural net strategy for finding optimal
kernels is presented.
Numerical methods are applicable to obtain actions of effective theories on
lattices of finite volume. The constraint effective potential) is of particular
interest. In a Higgs model it yields the free energy, considered as a function
of a gauge covariant magnetization. Its shape determines the phase structure of
the theory. Its loop expansion with and without gauge fields can be used to
determine finite size corrections to numerical data.Comment: 45 pages, 9 figs., preprint DESY 92-070 (figs. 3-9 added in ps
format
Nexus solitons in the center vortex picture of QCD
It is very plausible that confinement in QCD comes from linking of Wilson
loops to finite-thickness vortices with magnetic fluxes corresponding to the
center of the gauge group. The vortices are solitons of a gauge-invariant QCD
action representing the generation of gluon mass. There are a number of other
solitonic states of this action. We discuss here what we call nexus solitons,
in which for gauge group SU(N), up to N vortices meet a a center, or nexus,
provided that the total flux of the vortices adds to zero (mod N). There are
fundamentally two kinds of nexuses: Quasi-Abelian, which can be described as
composites of Abelian imbedded monopoles, whose Dirac strings are cancelled by
the flux condition; and fully non-Abelian, resembling a deformed sphaleron.
Analytic solutions are available for the quasi-Abelian case, and we discuss
variational estimates of the action of the fully non-Abelian nexus solitons in
SU(2). The non-Abelian nexuses carry Chern-Simons number (or topological charge
in four dimensions). Their presence does not change the fundamentals of
confinement in the center-vortex picture, but they may lead to a modified
picture of the QCD vacuum.Comment: LateX, 24 pages, 2 .eps figure
- …