7,931 research outputs found
Polarization dependence of x-ray absorption spectra in Na_xCoO_2
In order to shed light on the electronic structure of Na_xCoO_2, and
motivated by recent Co L-edge X-ray absorption spectra (XAS) experiments with
polarized light, we calculate the electronic spectrum of a CoO_6 cluster
including all interactions between 3d orbitals. We obtain the ground state for
two electronic occupations in the cluster that correspond nominally to all O in
the O^{-2} oxidation state, and Co^{+3} or Co^{+4}. Then, all excited states
obtained by promotion of a Co 2p electron to a 3d electron, and the
corresponding matrix elements are calculated. A fit of the observed
experimental spectra is good and points out a large Co-O covalency and cubic
crystal field effects, that result in low spin Co 3d configurations. Our
results indicate that the effective hopping between different Co atoms plays a
major role in determining the symmetry of the ground state in the lattice.
Remaining quantitative discrepancies with the XAS experiments are expected to
come from composition effects of itineracy in the ground and excited states.Comment: 10 pages, 4 figure
Multi-particle-collision dynamics: Flow around a circular and a square cylinder
A particle-based model for mesoscopic fluid dynamics is used to simulate
steady and unsteady flows around a circular and a square cylinder in a
two-dimensional channel for a range of Reynolds number between 10 and 130.
Numerical results for the recirculation length, the drag coefficient, and the
Strouhal number are reported and compared with previous experimental
measurements and computational fluid dynamics data. The good agreement
demonstrates the potential of this method for the investigation of complex
flows.Comment: 6 pages, separated figures in .jpg format, to be published in
Europhysics Letter
Optimization of circular orifice jets mixing into a heated cross flow in a cylindrical duct
To examine the mixing characteristics of circular jets in an axisymmetric can geometry, temperature measurements were obtained downstream of a row of cold jet injected into a heated cross stream. The objective was to obtain uniform mixing within one duct radius downstream of the leading edge of the jet orifices. An area weighted standard deviation of the mixture fraction was used to help quantify the degree of mixedness at a given plane. Non-reacting experiments were conducted to determine the influence of the number of jets on the mixedness in a cylindrical configuration. Results show that the number of orifices significantly impacts the mixing characteristics of jets injected from round hole orifices in a can geometry. Optimum mixing occurs when the mean jet trajectory aligns with the radius which divides the cross sectional area of the can into two equal parts at one mixer radius downstream of the leading edge of the orifice. The optimum number of holes at momentum-flux ratios of 25 and 52 is 10 and 15 respectively
Consistent particle-based algorithm with a non-ideal equation of state
A thermodynamically consistent particle-based model for fluid dynamics with
continuous velocities and a non-ideal equation of state is presented. Excluded
volume interactions are modeled by means of biased stochastic multiparticle
collisions which depend on the local velocities and densities. Momentum and
energy are exactly conserved locally. The equation of state is derived and
compared to independent measurements of the pressure. Results for the kinematic
shear viscosity and self-diffusion constants are presented. A caging and
order/disorder transition is observed at high densities and large collision
frequency.Comment: 7 pages including 4 figure
Octet-Baryon Form Factors in the Diquark Model
We present an alternative parameterization of the quark-diquark model of
baryons which particularly takes care of the most recent proton electric
form-factor data from the E136 experiment at SLAC. In addition to
electromagnetic form factors of the nucleon, for which good agreement with data
is achieved, we discuss the weak axial vector form factor of the nucleon as
well as electromagnetic form factors of and hyperons.
Technical advance in calculating the pertinent analytic expressions within
perturbative quantum chromodynamics is gained by formulating the wave function
of the quark-diquark system in a covariant way. Finally, we also comment on the
influence of Sudakov corrections within the scope of the diquark model.Comment: 16 pages, WU-B 93-07, latex, uuencoded postscript files of 7 figures
appended at the end of the latex fil
Hammerhead, an ultrahigh resolution ePix camera for wavelength-dispersive spectrometers
Wavelength-dispersive spectrometers (WDS) are often used in synchrotron and
FEL applications where high energy resolution (in the order of eV) is
important. Increasing WDS energy resolution requires increasing spatial
resolution of the detectors in the dispersion direction. The common approaches
with strip detectors or small pixel detectors are not ideal. We present a novel
approach, with a sensor using rectangular pixels with a high aspect ratio
(between strips and pixels, further called "strixels"), and strixel
redistribution to match the square pixel arrays of typical ASICs while avoiding
the considerable effort of redesigning ASICs. This results in a sensor area of
17.4 mm x 77 mm, with a fine pitch of 25 m in the horizontal direction
resulting in 3072 columns and 176 rows. The sensors use ePix100 readout ASICs,
leveraging their low noise (43 e, or 180 eV rms). We present results
obtained with a Hammerhead ePix100 camera, showing that the small pitch (25
m) in the dispersion direction maximizes performance for both high and low
photon occupancies, resulting in optimal WDS energy resolution. The low noise
level at high photon occupancy allows precise photon counting, while at low
occupancy, both the energy and the subpixel position can be reconstructed for
every photon, allowing an ultrahigh resolution (in the order of 1 m) in
the dispersion direction and rejection of scattered beam and harmonics. Using
strixel sensors with redistribution and flip-chip bonding to standard ePix
readout ASICs results in ultrahigh position resolution (1 m) and low
noise in WDS applications, leveraging the advantages of hybrid pixel detectors
(high production yield, good availability, relatively inexpensive) while
minimizing development complexity through sharing the ASIC, hardware, software
and DAQ development with existing versions of ePix cameras.Comment: 8 pages, 6 figure
Dynamic correlations in stochastic rotation dynamics
The dynamic structure factor, vorticity and entropy density dynamic
correlation functions are measured for Stochastic Rotation Dynamics (SRD), a
particle based algorithm for fluctuating fluids. This allows us to obtain
unbiased values for the longitudinal transport coefficients such as thermal
diffusivity and bulk viscosity. The results are in good agreement with earlier
numerical and theoretical results, and it is shown for the first time that the
bulk viscosity is indeed zero for this algorithm. In addition, corrections to
the self-diffusion coefficient and shear viscosity arising from the breakdown
of the molecular chaos approximation at small mean free paths are analyzed. In
addition to deriving the form of the leading correlation corrections to these
transport coefficients, the probabilities that two and three particles remain
collision partners for consecutive time steps are derived analytically in the
limit of small mean free path. The results of this paper verify that we have an
excellent understanding of the SRD algorithm at the kinetic level and that
analytic expressions for the transport coefficients derived elsewhere do indeed
provide a very accurate description of the SRD fluid.Comment: 33 pages including 16 figure
X-ray absorption spectroscopy on layered cobaltates Na_xCoO_2
Measurements of polarization and temperature dependent soft x-ray absorption
have been performed on Na_xCoO_2 single crystals with x=0.4 and x=0.6. They
show a deviation of the local trigonal symmetry of the CoO_6 octahedra, which
is temperature independent in a temperature range between 25 K and 372 K. This
deviation was found to be different for Co^{3+} and Co^{4+} sites. With the
help of a cluster calculation we are able to interpret the Co L_{23}-edge
absorption spectrum and find a doping dependent energy splitting between the
t_{2g} and the e_g levels (10Dq) in Na_xCoO_2.Comment: 7 pages, 8 figure
Mesoscopic model for the fluctuating hydrodynamics of binary and ternary mixtures
A recently introduced particle-based model for fluid dynamics with continuous
velocities is generalized to model immiscible binary mixtures. Excluded volume
interactions between the two components are modeled by stochastic multiparticle
collisions which depend on the local velocities and densities. Momentum and
energy are conserved locally, and entropically driven phase separation occurs
for high collision rates. An explicit expression for the equation of state is
derived, and the concentration dependence of the bulk free energy is shown to
be the same as that of the Widom-Rowlinson model. Analytic results for the
phase diagram are in excellent agreement with simulation data. Results for the
line tension obtained from the analysis of the capillary wave spectrum of a
droplet agree with measurements based on the Laplace's equation. The
introduction of "amphiphilic" dimers makes it possible to model the phase
behavior and dynamics of ternary surfactant mixtures.Comment: 7 pages including 6 figure
Determining the phonon DOS from specific heat measurements via maximum entropy methods
The maximum entropy and reverse Monte-Carlo methods are applied to the
computation of the phonon density of states (DOS) from heat capacity data. The
approach is introduced and the formalism is described. Simulated data is used
to test the method, and its sensitivity to noise. Heat capacity measurements
from diamond are used to demonstrate the use of the method with experimental
data. Comparison between maximum entropy and reverse Monte-Carlo results shows
the form of the entropy used here is correct, and that results are stable and
reliable. Major features of the DOS are picked out, and acoustic and optical
phonons can be treated with the same approach. The treatment set out in this
paper provides a cost-effective and reliable method for studies of the phonon
properties of materials.Comment: Reprint to improve access. 10 pages, 6 figure
- …