3,582 research outputs found

    Herschel observations in the ultracompact HII region Mon R2: Water in dense photon-dominated regions (PDRs)

    Get PDF
    Context. Monoceros R2, at a distance of 830 pc, is the only ultracompact Hii region (UC H_(II)) where the photon-dominated region (PDR) between the ionized gas and the molecular cloud can be resolved with Herschel. Therefore, it is an excellent laboratory to study the chemistry in extreme PDRs (G_0 > 10^5 in units of Habing field, n > 10^6 cm^9−3)). Aims. Our ultimate goal is to probe the physical and chemical conditions in the PDR around the UC H_(II) Mon R2. Methods. HIFI observations of the abundant compounds ^(13)CO, C^(18)O, o-H_2^(18)O, HCO^+, CS, CH, and NH have been used to derive the physical and chemical conditions in the PDR, in particular the water abundance. The modeling of the lines has been done with the Meudon PDR code and the non-local radiative transfer model described by Cernicharo et al. Results. The ^(13)CO, C^(18)O, o-H^(18)_2O, HCO^+ and CS observations are well described assuming that the emission is coming from a dense (n = 5 × 10^6 cm^(−3), N(H_2) > 10^(22) cm^(−2)) layer of molecular gas around the H_(II) region. Based on our o-H^(18)_2O observations, we estimate an o-H_2O abundance of ≈2 × 10^(−8). This is the average ortho-water abundance in the PDR. Additional H^(18)_2O and/or water lines are required to derive the water abundance profile. A lower density envelope (n ~ 10^5 cm^(−3), N(H_2) = 2−5 × 10^(22) cm^(−2)) is responsible for the absorption in the NH 1_1 → 0_2 line. The emission of the CH ground state triplet is coming from both regions with a complex and self-absorbed profile in the main component. The radiative transfer modeling shows that the ^(13)CO and HCO^+ line profiles are consistent with an expansion of the molecular gas with a velocity law, v_e = 0.5 × (r/R_(out))^(−1) km s^(−1), although the expansion velocity is poorly constrained by the observations presented here. Conclusions. We determine an ortho-water abundance of ≈2 × 10^(−8) in Mon R2. Because shocks are unimportant in this region and our estimate is based on H^(18)_2O observations that avoids opacity problems, this is probably the most accurate estimate of the water abundance in PDRs thus far

    Protostellar clusters in intermediate-mass (IM) star forming regions

    Full text link
    The transition between the low density groups of T Tauri stars and the high density clusters around massive stars occurs in the intermediate-mass (IM) range (M_*\sim2--8 M_\odot). High spatial resolution studies of IM young stellar objects (YSO) can provide important clues to understand the clustering in massive star forming regions. Aims: Our aim is to search for clustering in IM Class 0 protostars. The high spatial resolution and sensitivity provided by the new A configuration of the Plateau de Bure Interferometer (PdBI) allow us to study the clustering in these nearby objects. Methods: We have imaged three IM Class 0 protostars (Serpens-FIRS 1, IC 1396 N, CB 3) in the continuum at 3.3 and 1.3mm using the PdBI. The sources have been selected with different luminosity to investigate the dependence of the clustering process on the luminosity of the source. Results: Only one millimeter (mm) source is detected towards the low luminosity source Serpens--FIRS 1. Towards CB 3 and IC1396 N, we detect two compact sources separated by \sim0.05 pc. The 1.3mm image of IC 1396 N, which provides the highest spatial resolution, reveal that one of these cores is splitted in, at least, three individual sources.Comment: 4 pages, 3 figures, accepted for publication in Astronomy and Astrophysics Letters (Special Feature IRAM/PdB

    A Keplerian gaseous disk around the B0 star R Mon

    Get PDF
    We present high-angular resolution observations of the circumstellar disk around the massive Herbig Be star R Mon (M~8 Msun) in the continuum at 2.7mm and 1.3mm and the CO 1->0 and 2->1 rotational lines. Based on the new 1.3mm continuum image we estimate a disk mass (gas+dust) of 0.007 Msun and an outer radius of <150 AU. Our CO images are consistent with the existence of a Keplerian rotating gaseous disk around this star. Up to our knowledge, this is the most clear evidence for the existence of Keplerian disks around massive stars reported thus far. The mass and physical characteristics of this disk are similar to thoseof the more evolved T Tauri stars and indicate a shorter timescale for the evolution and dispersal of circumstellar disks around massive stars which lose most of their mass before the star becomes visible.Comment: 5 page

    ISO observations toward the reflection nebula NGC 7023: A nonequilibrium ortho- to para-H2 ratio

    Full text link
    We have observed the S(0), S(1), S(2), S(3), S(4) and S(5) rotational lines of molecular hydrogen (H2) towards the peak of the photodissociation region (PDR) associated with the reflection nebula NGC 7023. The observed H2 line ratios show that they arise in warm gas with kinetic temperatures ~300 - 700 K. However, the data cannot be fitted by an ortho- to para- (OTP) ratio of 3. An OTP ratio in the range ~1.5 - 2 is necessary to explain our observations. This is the first detection of a non-equilibrium OTP ratio measured from the H2 pure-rotational lines in a PDR. The existence of a dynamical PDR is discussed as the most likely explanation for this low OTP ratio.Comment: 4 pages, 3 figure

    Direct detection of a flared disk around a young massive star HD200775 and its 10 to 1000AU scale properties

    Full text link
    We made mid-infrared observations of the 10Msun Herbig Be star HD200775 with the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the 8.2m Subaru Telescope. We discovered diffuse emission of an elliptical shape extended in the north-south direction inabout 1000AU radius around unresolved excess emission. The diffuse emission is perpendicular to the cavity wall formed by the past outflow activity and is parallel to the projected major axis of the central close binary orbit. The centers of the ellipse contours of the diffuse emission are shifted from the stellar position and the amount of the shift increases as the contour brightness level decreases. The diffuse emission is well explained in all of geometry, size, and configuration by an inclined flared disk where only its surface emits the mid-infrared photons. Our results give the first well-resolved infrared disk images around a massive star and strongly support that HD200775 is formed through the disk accretion. The disk survives the main accretion phase and shows a structure similar to that around lower-mass stars with 'disk atmosphere'. At the same time, the disk also shows properties characteristic to massive stars such as photoevaporation traced by the 3.4mm free-free emission and unusual silicate emission with a peak at 9.2micron, which is shorter than that of many astronomical objects. It provides a good place to compare the disk properties between massive and lower-mass stars.Comment: 18 pages, 8 figures, accepted by The Astrophysical Journa

    Insights into the Carbon chemistry of Mon R2

    Full text link
    Aiming to learn about the chemistry of the dense PDR around the ultracompact (UC) HII region in Mon R2, we have observed a series of mm-wavelength transitions of C3H2 and C2H. In addition, we have traced the distribution of other molecules, such as H13CO+, SiO, HCO, and HC3N. These data, together with the reactive ions recently detected, have been considered to determine the physical conditions and to model the PDR chemistry. We then identified two kind of molecules. The first group, formed by the reactive ions (CO+, HOC+) and small hydrocarbons (C2H, C3H2), traces the surface layers of the PDR and is presumably exposed to a high UV field (hence we called it as "high UV", or HUV). HUV species is expected to dominate for visual absorptions 2 < Av < 5 mag. A second group (less exposed to the UV field, and hence called "low UV", or LUV) includes HCO and SiO, and is mainly present at the edges of the PDR (Av > 5 mag). While the abundances of the HUV molecules can be explained by gas phase models, this is not the case for the studied LUV ones. Although some efficient gas-phase reactions might be lacking, grain chemistry sounds like a probable mechanism able to explain the observed enhancement of HCO and SiO. Within this scenario, the interaction of UV photons with grains produces an important effect on the molecular gas chemistry and constitutes the first evidence of an ionization front created by the UC HII region carving its host molecular cloud. The physical conditions and kinematics of the gas layer which surrounds the UC HII region were derived from the HUV molecules. Molecular hydrogen densities > 4 10^6 cm^(-3) are required to reproduce the observations. Such high densities suggest that the HII region could be pressure-confined by the surrounding high density molecular gas.Comment: 32 pages, 8 figures. Accepted by Astrophysical Journa
    corecore