857 research outputs found

    An NMR Analog of the Quantum Disentanglement Eraser

    Get PDF
    We report the implementation of a three-spin quantum disentanglement eraser on a liquid-state NMR quantum information processor. A key feature of this experiment was its use of pulsed magnetic field gradients to mimic projective measurements. This ability is an important step towards the development of an experimentally controllable system which can simulate any quantum dynamics, both coherent and decoherent.Comment: Four pages, one figure (RevTeX 2.1), to appear in Physics Review Letter

    Incoherent Noise and Quantum Information Processing

    Full text link
    Incoherence in the controlled Hamiltonian is an important limitation on the precision of coherent control in quantum information processing. Incoherence can typically be modelled as a distribution of unitary processes arising from slowly varying experimental parameters. We show how it introduces artifacts in quantum process tomography and we explain how the resulting estimate of the superoperator may not be completely positive. We then go on to attack the inverse problem of extracting an effective distribution of unitaries that characterizes the incoherence via a perturbation theory analysis of the superoperator eigenvalue spectra.Comment: 15 pages, 5 figures, replaced with future JCP published versio

    Subsystem Pseudo-pure States

    Full text link
    A critical step in experimental quantum information processing (QIP) is to implement control of quantum systems protected against decoherence via informational encodings, such as quantum error correcting codes, noiseless subsystems and decoherence free subspaces. These encodings lead to the promise of fault tolerant QIP, but they come at the expense of resource overheads. Part of the challenge in studying control over multiple logical qubits, is that QIP test-beds have not had sufficient resources to analyze encodings beyond the simplest ones. The most relevant resources are the number of available qubits and the cost to initialize and control them. Here we demonstrate an encoding of logical information that permits the control over multiple logical qubits without full initialization, an issue that is particularly challenging in liquid state NMR. The method of subsystem pseudo-pure state will allow the study of decoherence control schemes on up to 6 logical qubits using liquid state NMR implementations.Comment: 9 pages, 1 Figur

    Principles of Control for Decoherence-Free Subsystems

    Get PDF
    Decoherence-Free Subsystems (DFS) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians theoretically exist that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFS. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two-physical-qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.Comment: 12 pages, 7 figure

    A Note on the correspondence between Qubit Quantum Operations and Special Relativity

    Full text link
    We exploit a well-known isomorphism between complex hermitian 2Ă—22\times 2 matrices and R4\mathbb{R}^4, which yields a convenient real vector representation of qubit states. Because these do not need to be normalized we find that they map onto a Minkowskian future cone in E1,3\mathbb{E}^{1,3}, whose vertical cross-sections are nothing but Bloch spheres. Pure states are represented by light-like vectors, unitary operations correspond to special orthogonal transforms about the axis of the cone, positive operations correspond to pure Lorentz boosts. We formalize the equivalence between the generalized measurement formalism on qubit states and the Lorentz transformations of special relativity, or more precisely elements of the restricted Lorentz group together with future-directed null boosts. The note ends with a discussion of the equivalence and some of its possible consequences.Comment: 6 pages, revtex, v3: revised discussio
    • …
    corecore