302 research outputs found

    Fundamental Physics and Relativistic Laboratory Astrophysics with Extreme Power Lasers

    Full text link
    The prospects of using extreme relativistic laser-matter interactions for laboratory astrophysics are discussed. Laser-driven process simulation of matter dynamics at ultra-high energy density is proposed for the studies of astrophysical compact objects and the early universe.Comment: 12 pages, 15 figures. Invited talk at European Conference on Laboratory Astrophysics (ECLA), 26-30 September, 2011, Paris, France. Submitted to European Astronomical Society Publications Serie

    Interaction of Electromagnetic Radiation with Luminal Mirror

    Full text link
    A modulation of refractive index can move at the speed of light. How it interacts with an electromagnetic wave? Does it reflect? We show that an incident electromagnetic wave, depending on its frequency either is totally transmitted with a phase shift, or forms a standing wave, or is totally reflected with the frequency upshift. A short incident pulse is converted into a wavepacket that has all three parts (transmitted, standing and reflected waves). The reflected part near the interface exhibits an infinitely growing in time local frequency. The wavepacket's energy spectral density asymptotically is the inverse square of frequency. If the refractive index modulation disappears, the high frequency radiation is released.Comment: 5 pages, 5 figure

    Sub-TeV proton beam generation by ultra-intense laser irradiation of foil-and-gas target

    Get PDF
    A two-phase proton acceleration scheme using an ultra-intense laser pulse irradiating a proton foil with a tenuous heavier-ion plasma behind it is presented. The foil electrons are compressed and pushed out as a thin dense layer by the radiation pressure and propagate in the plasma behind at near the light speed. The protons are in turn accelerated by the resulting space-charge field and also enter the backside plasma, but without the formation of a quasistationary double layer. The electron layer is rapidly weakened by the space-charge field. However, the laser pulse originally behind it now snowplows the backside-plasma electrons and creates an intense electrostatic wakefield. The latter can stably trap and accelerate the pre-accelerated proton layer there for a very long distance and thus to very high energies. The two-phase scheme is verified by particle-in-cell simulations and analytical modeling, which also suggests that a 0.54 TeV proton beam can be obtained with a 10(23) W/cm(2) laser pulse. (C) 2012 American Institute of Physics. [doi:10.1063/1.3684658]Physics, Fluids & PlasmasSCI(E)EI0ARTICLE2null1

    Neutrino oscillation studies with laser-driven beam dump facilities

    Full text link
    A new mechanism is suggested for efficient proton acceleration in the GeV energy range; applications to non-conventional high intensity proton drivers and, hence, to low-energy (10-200 MeV) neutrino sources are discussed. In particular we investigate possible uses to explore subdominant νˉμ→νˉe\bar{\nu}_\mu \to \bar{\nu}_e oscillations at the atmospheric scale and their CP conjugate. We emphasize the opportunity to develop these facilities in conjunction with projects for inertial confined nuclear fusion and neutron spallation sources.Comment: 30 pages, 9 figures, minor changes, version to appear in Nucl.Instrum.Meth.
    • …
    corecore