67 research outputs found

    Impacts of atmospheric CO2 and soil nutritional value on plant responses to rhizosphere colonization by soil bacteria

    Get PDF
    Concerns over rising atmospheric CO2 concentrations have led to growing interest in the effects of global change on plant-microbe interactions. As a primary substrate of plant metabolism, atmospheric CO2 influences below-ground carbon allocation and root exudation chemistry, potentially affecting rhizosphere interactions with beneficial soil microbes. In this study, we have examined the effects of different atmospheric CO2 concentrations on Arabidopsis rhizosphere colonization by the rhizobacterial strain Pseudomonas simiae WCS417 and the saprophytic strain Pseudomonas putida KT2440. Rhizosphere colonization by saprophytic KT2440 was not influenced by sub-ambient (200 ppm) and elevated (1,200 ppm) concentrations of CO2, irrespective of the carbon (C) and nitrogen (N) content of the soil. Conversely, rhizosphere colonization by WCS417 in soil with relatively low C and N content increased from sub-ambient to elevated CO2. Examination of plant responses to WCS417 revealed that plant growth and systemic resistance varied according to atmospheric CO2 concentration and soil-type, ranging from growth promotion with induced susceptibility at sub-ambient CO2, to growth repression with induced resistance at elevated CO2. Collectively, our results demonstrate that the interaction between atmospheric CO2 and soil nutritional status has a profound impact on plant responses to rhizobacteria. We conclude that predictions about plant performance under past and future climate scenarios depend on interactive plant responses to soil nutritional status and rhizobacteria

    HSD3B1 genotype identifies glucocorticoid responsiveness in severe asthma

    Get PDF
    Asthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3β-hydroxysteroid dehydrogenase-1 (3β-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3β-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention

    What Goes in Must Come out: Testing for Biases in Molecular Analysis of Arbuscular Mycorrhizal Fungal Communities

    Get PDF
    Arbuscular mycorrhizal (AM) fungi are widely distributed microbes that form obligate symbioses with the majority of terrestrial plants, altering nutrient transfers between soils and plants, thereby profoundly affecting plant growth and ecosystem properties. Molecular methods are commonly used in the study of AM fungal communities. However, the biases associated with PCR amplification of these organisms and their ability to be utilized quantitatively has never been fully tested. We used Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis to characterise artificial community templates containing known quantities of defined AM fungal genotypes. This was compared to a parallel in silico analysis that predicted the results of this experiment in the absence of bias. The data suggest that when used quantitatively the TRFLP protocol tested is a powerful, repeatable method for AM fungal community analysis. However, we suggest some limitations to its use for population-level analyses. We found no evidence of PCR bias, supporting the quantitative use of other PCR-based methods for the study of AM fungi such as next generation amplicon sequencing. This finding greatly improves our confidence in methods that quantitatively examine AM fungal communities, providing a greater understanding of the ecology of these important fungi

    Split-based computation of majority-rule supertrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Supertree methods combine overlapping input trees into a larger supertree. Here, I consider split-based supertree methods that first extract the split information of the input trees and subsequently combine this split information into a phylogeny. Well known split-based supertree methods are matrix representation with parsimony and matrix representation with compatibility. Combining input trees on the same taxon set, as in the consensus setting, is a well-studied task and it is thus desirable to generalize consensus methods to supertree methods.</p> <p>Results</p> <p>Here, three variants of majority-rule (MR) supertrees that generalize majority-rule consensus trees are investigated. I provide simple formulas for computing the respective score for bifurcating input- and supertrees. These score computations, together with a heuristic tree search minmizing the scores, were implemented in the python program PluMiST (Plus- and Minus SuperTrees) available from <url>http://www.cibiv.at/software/plumist</url>. The different MR methods were tested by simulation and on real data sets. The search heuristic was successful in combining compatible input trees. When combining incompatible input trees, especially one variant, MR(-) supertrees, performed well.</p> <p>Conclusions</p> <p>The presented framework allows for an efficient score computation of three majority-rule supertree variants and input trees. I combined the score computation with a heuristic search over the supertree space. The implementation was tested by simulation and on real data sets and showed promising results. Especially the MR(-) variant seems to be a reasonable score for supertree reconstruction. Generalizing these computations to multifurcating trees is an open problem, which may be tackled using this framework.</p

    An Essential Role for Katanin p80 and Microtubule Severing in Male Gamete Production

    Get PDF
    Katanin is an evolutionarily conserved microtubule-severing complex implicated in multiple aspects of microtubule dynamics. Katanin consists of a p60 severing enzyme and a p80 regulatory subunit. The p80 subunit is thought to regulate complex targeting and severing activity, but its precise role remains elusive. In lower-order species, the katanin complex has been shown to modulate mitotic and female meiotic spindle dynamics and flagella development. The in vivo function of katanin p80 in mammals is unknown. Here we show that katanin p80 is essential for male fertility. Specifically, through an analysis of a mouse loss-of-function allele (the Taily line), we demonstrate that katanin p80, most likely in association with p60, has an essential role in male meiotic spindle assembly and dissolution and the removal of midbody microtubules and, thus, cytokinesis. Katanin p80 also controls the formation, function, and dissolution of a microtubule structure intimately involved in defining sperm head shaping and sperm tail formation, the manchette, and plays a role in the formation of axoneme microtubules. Perturbed katanin p80 function, as evidenced in the Taily mouse, results in male sterility characterized by decreased sperm production, sperm with abnormal head shape, and a virtual absence of progressive motility. Collectively these data demonstrate that katanin p80 serves an essential and evolutionarily conserved role in several aspects of male germ cell development

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Health Professional Training and Capacity Strengthening Through International Academic Partnerships: The First Five Years of the Human Resources for Health Program in Rwanda

    Get PDF
    Abstract Background: The Rwanda Human Resources for Health Program (HRH Program) is a 7-year (2012-2019) health professional training initiative led by the Government of Rwanda with the goals of training a large, diverse, and competent health workforce and strengthening the capacity of academic institutions in Rwanda. Methods: The data for this organizational case study was collected through official reports from the Rwanda Ministry of Health (MoH) and 22 participating US academic institutions, databases from the MoH and the College of Medicine and Health Sciences (CMHS) in Rwanda, and surveys completed by the co-authors. Results: In the first 5 years of the HRH Program, a consortium of US academic institutions has deployed an average of 99 visiting faculty per year to support 22 training programs, which are on track to graduate almost 4600 students by 2019. The HRH Program has also built capacity within the CMHS by promoting the recruitment of Rwandan faculty and the establishment of additional partnerships and collaborations with the US academic institutions. Conclusion: The milestones achieved by the HRH Program have been substantial although some challenges persist. These challenges include adequately supporting the visiting faculty; pairing them with Rwandan faculty (twinning); ensuring strong communication and coordination among stakeholders; addressing mismatches in priorities between donors and implementers; the execution of a sustainability strategy; and the decision by one of the donors not to renew funding beyond March 2017. Over the next 2 academic years, it is critical for the sustainability of the 22 training programs supported by the HRH Program that the health-related Schools at the CMHS significantly scale up recruitment of new Rwandan faculty. The HRH Program can serve as a model for other training initiatives implemented in countries affected by a severe shortage of health professionals
    corecore