45 research outputs found

    3-Manifolds and 3d indices

    Get PDF

    K-Decompositions and 3d Gauge Theories

    Get PDF
    This paper combines several new constructions in mathematics and physics. Mathematically, we study framed flat PGL(K,C)-connections on a large class of 3-manifolds M with boundary. We define a space L_K(M) of framed flat connections on the boundary of M that extend to M. Our goal is to understand an open part of L_K(M) as a Lagrangian in the symplectic space of framed flat connections on the boundary, and as a K_2-Lagrangian, meaning that the K_2-avatar of the symplectic form restricts to zero. We construct an open part of L_K(M) from data assigned to a hypersimplicial K-decomposition of an ideal triangulation of M, generalizing Thurston's gluing equations in 3d hyperbolic geometry, and combining them with the cluster coordinates for framed flat PGL(K)-connections on surfaces. Using a canonical map from the complex of configurations of decorated flags to the Bloch complex, we prove that any generic component of L_K(M) is K_2-isotropic if the boundary satisfies some topological constraints (Theorem 4.2). In some cases this implies that L_K(M) is K_2-Lagrangian. For general M, we extend a classic result of Neumann-Zagier on symplectic properties of PGL(2) gluing equations to reduce the K_2-Lagrangian property to a combinatorial claim. Physically, we use the symplectic properties of K-decompositions to construct 3d N=2 superconformal field theories T_K[M] corresponding (conjecturally) to the compactification of K M5-branes on M. This extends known constructions for K=2. Just as for K=2, the theories T_K[M] are described as IR fixed points of abelian Chern-Simons-matter theories. Changes of triangulation (2-3 moves) lead to abelian mirror symmetries that are all generated by the elementary duality between N_f=1 SQED and the XYZ model. In the large K limit, we find evidence that the degrees of freedom of T_K[M] grow cubically in K.Comment: 121 pages + 2 appendices, 80 figures; Version 2: reorganized mathematical perspective, swapped Sections 3 and

    3d-3d Correspondence Revisited

    Get PDF
    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.Comment: 43 pages + 1 appendix, 6 figures Version 2: new appendix on flat connections in the 3d-3d correspondenc

    \Omega-deformation of B-twisted gauge theories and the 3d-3d correspondence

    Full text link
    We study \Omega-deformation of B-twisted gauge theories in two dimensions. As an application, we construct an \Omega-deformed, topologically twisted five-dimensional maximally supersymmetric Yang-Mills theory on the product of a Riemann surface Σ\Sigma and a three-manifold MM, and show that when Σ\Sigma is a disk, this theory is equivalent to analytically continued Chern-Simons theory on MM. Based on these results, we establish a correspondence between three-dimensional N=2\mathcal{N} = 2 superconformal theories and analytically continued Chern-Simons theory. Furthermore, we argue that there is a mirror symmetry between {\Omega}-deformed two-dimensional theories.Comment: 26 pages. v2: the discussion on the boundary condition for vector multiplet improved, and other minor changes mad

    Orientifolds and the Refined Topological String

    Full text link
    We study refined topological string theory in the presence of orientifolds by counting second-quantized BPS states in M-theory. This leads us to propose a new integrality condition for both refined and unrefined topological strings when orientifolds are present. We define the SO(2N) refined Chern-Simons theory which computes refined open string amplitudes for branes wrapping Seifert three-manifolds. We use the SO(2N) refined Chern-Simons theory to compute new invariants of torus knots that generalize the Kauffman polynomials. At large N, the SO(2N) refined Chern-Simons theory on the three-sphere is dual to refined topological strings on an orientifold of the resolved conifold, generalizing the Gopakumar-Sinha-Vafa duality. Finally, we use the (2,0) theory to define and solve refined Chern-Simons theory for all ADE gauge groups

    Holomorphic Blocks in Three Dimensions

    Get PDF
    We decompose sphere partition functions and indices of three-dimensional N=2 gauge theories into a sum of products involving a universal set of "holomorphic blocks". The blocks count BPS states and are in one-to-one correspondence with the theory's massive vacua. We also propose a new, effective technique for calculating the holomorphic blocks, inspired by a reduction to supersymmetric quantum mechanics. The blocks turn out to possess a wealth of surprising properties, such as a Stokes phenomenon that integrates nicely with actions of three-dimensional mirror symmetry. The blocks also have interesting dual interpretations. For theories arising from the compactification of the six-dimensional (2,0) theory on a three-manifold M, the blocks belong to a basis of wavefunctions in analytically continued Chern-Simons theory on M. For theories engineered on branes in Calabi-Yau geometries, the blocks offer a non-perturbative perspective on open topological string partition functions.Comment: 124 pages, 21 figures. v3: Typos correcte
    corecore