2,642 research outputs found

    Magnetic field induced 3D to 1D crossover in type II superconductors

    Full text link
    We review and analyze magnetization and specific heat investigations on type-II superconductors which uncover remarkable evidence for the magnetic field induced fnite size effect and the associated 3D to 1D crossover which enhances thermal fluctuations.Comment: 26 pages, 19 figure

    Personalized cancer medicine and the future of pathology

    Get PDF
    In February 2011, a group of pathologists from different departments in Europe met in Zurich, Switzerland, to discuss opportunities and challenges for pathology in the era of personalized medicine. The major topics of the meeting were assessment of the role of pathology in personalized medicine, its future profile among other biomedical disciplines with an interest in personalized medicine as well as the evolution of companion diagnostics. The relevance of novel technologies for genome analysis in clinical practice was discussed. The participants recognize that there should be more initiatives taken by the pathology community in companion diagnostics and in the emerging field of next-generation sequencing and whole genome analysis. The common view of the participants was that the pathology community has to be mobilized for stronger engagement in the future of personalized medicine. Pathologists should be aware of the challenges and the analytical opportunities of the new technologies. Challenges of clinical trial design as well as insurance and reimbursement questions were addressed. The pathology community has the responsibility to lead medical colleagues into embracing this new area of genomic medicine. Without this effort, the discipline of pathology risks losing its key position in molecular tissue diagnostic

    Triggering with the ALICE TRD

    Get PDF

    ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research

    Get PDF
    Abstract Background NTRK1, NTRK2 and NTRK3 fusions are present in a plethora of malignancies across different histologies. These fusions represent the most frequent mechanism of oncogenic activation of these receptor tyrosine kinases, and biomarkers for the use of TRK small molecule inhibitors. Given the varying frequency of NTRK1/2/3 fusions, crucial to the administration of NTRK inhibitors is the development of optimal approaches for the detection of human cancers harbouring activating NTRK1/2/3 fusion genes. Materials and methods Experts from several Institutions were recruited by the European Society for Medical Oncology (ESMO) Translational Research and Precision Medicine Working Group (TR and PM WG) to review the available methods for the detection of NTRK gene fusions, their potential applications, and strategies for the implementation of a rational approach for the detection of NTRK1/2/3 fusion genes in human malignancies. A consensus on the most reasonable strategy to adopt when screening for NTRK fusions in oncologic patients was sought, and further reviewed and approved by the ESMO TR and PM WG and the ESMO leadership. Results The main techniques employed for NTRK fusion gene detection include immunohistochemistry, fluorescence in situ hybridization (FISH), RT-PCR, and both RNA-based and DNA-based next generation sequencing (NGS). Each technique has advantages and limitations, and the choice of assays for screening and final diagnosis should also take into account the resources and clinical context. Conclusion In tumours where NTRK fusions are highly recurrent, FISH, RT-PCR or RNA-based sequencing panels can be used as confirmatory techniques, whereas in the scenario of testing an unselected population where NTRK1/2/3 fusions are uncommon, either front-line sequencing (preferentially RNA-sequencing) or screening by immunohistochemistry followed by sequencing of positive cases should be pursued

    Modification of the rho meson detected by low-mass electron-positron pairs in central Pb-Au collisions at 158 A GeV/c

    Get PDF
    We present a measurement of e+ee^+e^- pair production in central Pb-Au collisions at 158AA GeV/cc. As reported earlier, a significant excess of the e+ee^+e^- pair yield over the expectation from hadron decays is observed. The improved mass resolution of the present data set, recorded with the upgraded CERES experiment at the CERN-SPS, allows for a comparison of the data with different theoretical approaches. The data clearly favor a substantial in-medium broadening of the ρ\rho spectral function over a density-dependent shift of the ρ\rho pole mass. The in-medium broadening model implies that baryon induced interactions are the key mechanism to in-medium modifications of the ρ\rho-meson in the hot fireball at SPS energy.Comment: Revised versio

    New Results on Pb-Au Collisions at 40 AGeV from the CERES/NA45 Experiment

    Get PDF
    In 1999 the CERES/NA45 ran at the CERN SPS with a beam energy of 40 GeV/nucleon. The data set comprises about 8.7 millions Pb-Au events with a trigger selection corresponding to approximately the most central 30% of the geometrical cross section. Results on low-mass electron pair analysis are presented. The upgrade of the experimental setup with the radial drift TPC has allowed to enhance hadron physics capabilities of the experiment. New results on hadron spectra (including Lambda) and flow are presented.Comment: Talk at the International Nuclear Physics Conference INPC2001, Berkeley, CA, July 29th - August 3rd 200

    Elliptic flow of charged pions, protons and strange particles emitted in Pb+Au collisions at top SPS energy

    Full text link
    Differential elliptic flow spectra v2(pT) of \pi-, K0short, p, \Lambda have been measured at \sqrt(s NN)= 17.3 GeV around midrapidity by the CERN-CERES/NA45 experiment in mid-central Pb+Au collisions (10% of \sigma(geo)). The pT range extends from about 0.1 GeV/c (0.55 GeV/c for \Lambda) to more than 2 GeV/c. Protons below 0.4 GeV/c are directly identified by dE/dx. At higher pT, proton elliptic flow v2(pT) is derived as a constituent, besides \pi+ and K+, of the elliptic flow of positive pion candidates. The retrieval requires additional inputs: (i) of the particle composition, and (ii) of v2(pT) of positive pions. For (i), particle ratios obtained by NA49 were adapted to CERES conditions; for (ii), the measured v2(pT) of negative pions is substituted, assuming \pi+ and \pi- elliptic flow magnitudes to be sufficiently close. The v2(pT) spectra are compared to ideal-hydrodynamics calculations. In synopsis of the series \pi- - K0short - p - \Lambda, flow magnitudes are seen to fall with decreasing pT progressively even below hydro calculations with early kinetic freeze-out (Tf= 160 MeV) leaving not much time for hadronic evolution. The proton v2(pT) data show a downward swing towards low pT with excursions into negative v2 values. The pion-flow isospin asymmetry observed recently by STAR at RHIC, invalidating in principle our working assumption, is found in its impact on proton flow bracketed from above by the direct proton flow data, and not to alter any of our conclusions. Results are discussed in perspective of recent viscous dynamics studies which focus on late hadronic stages.Comment: 38 pages, 27 figures, 2 tables. Abstract and parts of introduction made more comprehensible; corrected typos; acknowledgement added. To appear in Nucl.Phys.
    corecore