109 research outputs found

    The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease

    Get PDF
    The Ξ²-site amyloid precursor protein cleaving enzyme 1 (BACE1) is necessary to generate the AΞ² peptide, which is implicated in Alzheimer's disease pathology. Studies show that the expression of BACE1 and its protease activity are tightly regulated, but the physiological function of BACE1 remains poorly understood. Recently, numerous axon guidance proteins were identified as potential substrates of BACE1. Here, we examined the consequences of loss of BACE1 function in a well-defined in vivo model system of axon guidance, mouse olfactory sensory neurons (OSNs). The BACE1 protein resides predominantly in proximal segment and the termini of OSN axons, and the expression of BACE1 inversely correlates with odor-evoked neural activity. The precision of targeting of OSN axons is disturbed in both BACE1 null and, surprisingly, in BACE1 heterozygous mice. We propose that BACE1 cleavage of axon guidance proteins is essential to maintain the connectivity of OSNs in vivo

    Influence of Olfactory Epithelium on Mitral/Tufted Cell Dendritic Outgrowth

    Get PDF
    Stereotypical connections between olfactory sensory neuron axons and mitral cell dendrites in the olfactory bulb establish the first synaptic relay for olfactory perception. While mechanisms of olfactory sensory axon targeting are reported, molecular regulation of mitral cell dendritic growth and refinement are unclear. During embryonic development, mitral cell dendritic distribution overlaps with olfactory sensory axon terminals in the olfactory bulb. In this study, we investigate whether olfactory sensory neurons in the olfactory epithelium influence mitral cell dendritic outgrowth in vitro. We report a soluble trophic activity in the olfactory epithelium conditioned medium which promotes mitral/tufted cell neurite outgrowth. While the trophic activity is present in both embryonic and postnatal olfactory epithelia, only embryonic but not postnatal mitral/tufted cells respond to this activity. We show that BMP2, 5 and 7 promote mitral/tufted cells neurite outgrowth. However, the BMP antagonist, Noggin, fails to neutralize the olfactory epithelium derived neurite growth promoting activity. We provide evidence that olfactory epithelium derived activity is a protein factor with molecular weight between 50–100 kD. We also observed that Follistatin can effectively neutralize the olfactory epithelium derived activity, suggesting that TGF-beta family proteins are involved to promote mitral/tufted dendritic elaboration

    bantam Is Required for Optic Lobe Development and Glial Cell Proliferation

    Get PDF
    microRNAs (miRNAs) are small, conserved, non-coding RNAs that contribute to the control of many different cellular processes, including cell fate specification and growth control. Drosophila bantam, a conserved miRNA, is involved in several functions, such as stimulating proliferation and inhibiting apoptosis in the wing disc. Here, we reported the detailed expression pattern of bantam in the developing optic lobe, and demonstrated a new, essential role in promoting proliferation of mitotic cells in the optic lobe, including stem cells and differentiated glial cells. Changes in bantam levels autonomously affected glial cell number and distribution, and non-autonomously affected photoreceptor neuron axon projection patterns. Furthermore, we showed that bantam promotes the proliferation of mitotically active glial cells and affects their distribution, largely through down regulation of the T-box transcription factor, optomotor-blind (omb, Flybase, bifid). Expression of omb can rescue the bantam phenotype, and restore the normal glial cell number and proper glial cell positioning in most Drosophila brains. These results suggest that bantam is critical for maintaining the stem cell pools in the outer proliferation center and glial precursor cell regions of the optic lobe, and that its expression in glial cells is crucial for their proliferation and distribution

    Control of Canalization and Evolvability by Hsp90

    Get PDF
    Partial reduction of Hsp90 increases expression of morphological novelty in qualitative traits of Drosophila and Arabidopsis, but the extent to which the Hsp90 chaperone also controls smaller and more likely adaptive changes in natural quantitative traits has been unclear. To determine the effect of Hsp90 on quantitative trait variability we deconstructed genetic, stochastic and environmental components of variation in Drosophila wing and bristle traits of genetically matched flies, differing only by Hsp90 loss-of-function or wild-type alleles. Unexpectedly, Hsp90 buffering was remarkably specific to certain normally invariant and highly discrete quantitative traits. Like the qualitative trait phenotypes controlled by Hsp90, highly discrete quantitative traits such as scutellor and thoracic bristle number are threshold traits. When tested across genotypes sampled from a wild population or in laboratory strains, the sensitivity of these traits to many types of variation was coordinately controlled, while continuously variable bristle types and wing size, and critically invariant left-right wing asymmetry, remained relatively unaffected. Although increased environmental variation and developmental noise would impede many types of selection response, in replicate populations in which Hsp90 was specifically impaired, heritability and β€˜extrinsic evolvability’, the expected response to selection, were also markedly increased. However, despite the overall buffering effect of Hsp90 on variation in populations, for any particular individual or genotype in which Hsp90 was impaired, the size and direction of its effects were unpredictable. The trait and genetic-background dependence of Hsp90 effects and its remarkable bias toward invariant or canalized traits support the idea that traits evolve independent and trait-specific mechanisms of canalization and evolvability through their evolution of non-linearity and thresholds. Highly non-linear responses would buffer variation in Hsp90-dependent signaling over a wide range, while over a narrow range of signaling near trait thresholds become more variable with increasing probability of triggering all-or-none developmental responses

    Downregulation of the Hsp90 System Causes Defects in Muscle Cells of Caenorhabditis Elegans

    Get PDF
    The ATP-dependent molecular chaperone Hsp90 is required for the activation of a variety of client proteins involved in various cellular processes. Despite the abundance of known client proteins, functions of Hsp90 in the organismal context are not fully explored. In Caenorhabditis elegans, Hsp90 (DAF-21) has been implicated in the regulation of the stress-resistant dauer state, in chemosensing and in gonad formation. In a C. elegans strain carrying a DAF-21 mutation with a lower ATP turnover, we observed motility defects. Similarly, a reduction of DAF-21 levels in wild type nematodes leads to reduced motility and induction of the muscular stress response. Furthermore, aggregates of the myosin MYO-3 are visible in muscle cells, if DAF-21 is depleted, implying a role of Hsp90 in the maintenance of muscle cell functionality. Similar defects can also be observed upon knockdown of the Hsp90-cochaperone UNC-45. In life nematodes YFP-DAF-21 localizes to the I-band and the M-line of the muscular ultrastructure, but the protein is not stably attached there. The Hsp90-cofactor UNC-45-CFP contrarily can be found in all bands of the nematode muscle ultrastructure and stably associates with the UNC-54 containing A-band. Thus, despite the physical interaction between DAF-21 and UNC-45, apparently the two proteins are not always localized to the same muscular structures. While UNC-45 can stably bind to myofilaments in the muscular ultrastructure, Hsp90 (DAF-21) appears to participate in the maintenance of muscle structures as a transiently associated diffusible factor

    Understanding the growth in outdoor recreation participation: an opportunity for sport development in the United Kingdom

    Get PDF
    Β© 2018, Β© 2019 Informa UK Limited, trading as Taylor & Francis Group. This paper examines the growth in importance and scale of the outdoor recreation sector in the United Kingdom. It establishes a five-component model to help understand the growth in this sub-sector of the wider sport and physical activity industry. The paper is based on a narrative literature review of the importance of outdoor recreation and also sets the position of the sector in terms of sport policy in the UK. From determining the factors that are underpinning the growing importance of the sector the article goes on to establish implications for policy and practice in sport policy and development in the UK and beyond. It seeks to establish lesson learning between industry and academia that has underpinned the evolution of outdoor recreation policy development in recent years. Furthermore, it establishes future research agendas and directions for those working in outdoor recreation and physical activity spaces and places
    • …
    corecore