1,340 research outputs found
A new species of Pachycara Zugmayer, 1911 (Teleostei: Zoarcidae) from deep-sea chemosynthetic environments in the Caribbean Sea.
The 28th species of the eelpout genus Pachycara Zugmayer, 1911, is described from specimens collected from an active hydrothermal vent field at a depth of about 2300 m at the Mid-Cayman Spreading Centre of the Caribbean Sea. A tentatively identified early juvenile is recorded at a methane seep at a depth of 1049 m near Tobago. The new species is distinguished from its congeners mainly by its few pectoral fin rays, low vertebral counts, single, mediolateral branch of the lateral line system and presence of scales on the nape and cheeks
Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite
Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown
impressive power conversion efficiencies of above 20%. However, the microscopic
mechanism of the high photovoltaic performance is yet to be fully understood.
Particularly, the dynamics of CH3NH3+ cations and their impact on relevant
processes such as charge recombination and exciton dissociation are still
poorly understood. Here, using elastic and quasi-elastic neutron scattering
techniques and group theoretical analysis, we studied rotational modes of the
CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K)
and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold
rotational symmetry of the C-N axis (C4) along with three-fold rotation around
the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is
present. Around room temperature, the characteristic relaxation times for the
C4 rotation is found to be ps while for the C3 rotation ps. The -dependent
rotational relaxation times were fitted with Arrhenius equations to obtain
activation energies. Our data show a close correlation between the C4
rotational mode and the temperature dependent dielectric permittivity. Our
findings on the rotational dynamics of CH3NH3+ and the associated dipole have
important implications on understanding the low exciton binding energy and slow
charge recombination rate in CH3NH3PbI3 which are directly relevant for the
high solar cell performance
How the mollusc got its scales: convergent evolution of the molluscan scleritome
Radiation of dramatically disparate forms among the phylum Mollusca remains a key question in metazoan evolution, and requires careful evaluation of homology of hard parts throughout the deep fossil record. Enigmatic early Cambrian taxa such as Halkieria and Wiwaxia (in the clade Halwaxiida) have been proposed to represent stem-group aculiferan molluscs (Caudofoveata + Solenogastres + Polyplacophora), as complex scleritomes were considered to be unique to aculiferans among extant molluscs. The ‘scaly-foot gastropod’ (Neomphalina: Peltospiridae) from hydrothermal vents of the Indian Ocean, however, also carries dermal sclerites and thus challenges this inferred homology. Despite superficial similarities to various mollusc sclerites, the scaly-foot gastropod sclerites are secreted in layers covering outpockets of epithelium and are largely proteinaceous, while chiton (Polyplacophora: Chitonida) sclerites are secreted to fill an invaginated cuticular chamber and are largely calcareous. Marked differences in the underlying epithelium of the scaly-foot gastropod sclerites and operculum suggest that the sclerites do not originate from multiplication of the operculum. This convergence in different classes highlights the ability of molluscs to adapt mineralized dermal structures, as supported by the extensive early fossil record of molluscs with scleritomes. Sclerites of halwaxiids are morphologically variable, undermining the assumed affinity of specific taxa with chitons, or the larger putative clade Aculifera. Comparisons with independently derived similar structures in living molluscs are essential for determining homology among fossils and their position with respect to the enigmatic evolution of molluscan shell forms in deep time
Recommended from our members
Crustal Deformation and Fault Strength of the Sulawesi Subduction Zone
This paper investigates the seismicity and rheology of the North-Sulawesi subduction zone. Body-wave modeling is used to estimate focal mechanisms and centroid depths of moderate magnitude (M5–M6.5) earthquakes on the North Sulawesi megathrust and surrounding region. The slip vectors of megathrust earthquakes radiate outward from Sulawesi, indicating motion that is incompatible with the relative motion of two rigid plates. Instead, the observed deformation implies lateral spreading of high topography, controlled by gravitational potential energy contrasts. This finding suggests that the observed deformation of Sulawesi results from stresses transmitted through the lithosphere, rather than basal tractions due to circulation in the mantle. Our modeling of the force balance on the megathrust shows that the subduction megathrust is weak, with an average shear stress of ∼13 MPa and an effective coefficient of friction of 0.03. Elsewhere in Sulawesi, slip vectors of other earthquakes suggest similar potential-energy-driven deformation is present, but at significantly slower rates. Our results show the importance of lateral rheology contrasts in determining deformation rate, and hence seismic hazard, in response to a given driving force.Newton Institutional Links
Leverhulme Fellowshi
Multi-phonon scattering and Ti-induced hydrogen dynamics in sodium alanate
We use ab initio methods and neutron inelastic scattering (NIS) to study the
structure, energetics, and dynamics of pure and Ti-doped sodium alanate
(NaAlH_4), focusing on the possibility of substitutional Ti doping. The NIS
spectrum is found to exhibit surprisingly strong and sharp two-phonon features.
The calculations reveal that substitutional Ti doping is energetically
possible. Ti prefers to substitute for Na and is a powerful hydrogen attractor
that facilitates multiple Al--H bond breaking. Our results hint at new ways of
improving the hydrogen dynamics and storage capacity of the alanates.Comment: 5 pages, with 4 postscript figures embedded. Uses REVTEX4 and
graphicx macro
The heart of a dragon: 3D anatomical reconstruction of the ‘scaly-foot gastropod’ (Mollusca: Gastropoda: Neomphalina) reveals its extraordinary circulatory system
Introduction
The ‘scaly-foot gastropod’ (Chrysomallon squamiferum Chen et al., 2015) from deep-sea hydrothermal vent ecosystems of the Indian Ocean is an active mobile gastropod occurring in locally high densities, and it is distinctive for the dermal scales covering the exterior surface of its foot. These iron-sulfide coated sclerites, and its nutritional dependence on endosymbiotic bacteria, are both noted as adaptations to the extreme environment in the flow of hydrogen sulfide. We present evidence for other adaptations of the ‘scaly-foot gastropod’ to life in an extreme environment, investigated through dissection and 3D tomographic reconstruction of the internal anatomy.
Results
Our anatomical investigations of juvenile and adult specimens reveal a large unganglionated nervous system, a simple and reduced digestive system, and that the animal is a simultaneous hermaphrodite. We show that Chrysomallon squamiferum relies on endosymbiotic bacteria throughout post-larval life. Of particular interest is the circulatory system: Chrysomallon has a very large ctenidium supported by extensive blood sinuses filled with haemocoel. The ctenidium provides oxygen for the host but the circulatory system is enlarged beyond the scope of other similar vent gastropods. At the posterior of the ctenidium is a remarkably large and well-developed heart. Based on the volume of the auricle and ventricle, the heart complex represents approximately 4 % of the body volume. This proportionally giant heart primarily sucks blood through the ctenidium and supplies the highly vascularised oesophageal gland. Thus we infer the elaborate cardiovascular system most likely evolved to oxygenate the endosymbionts in an oxygen poor environment and/or to supply hydrogen sulfide to the endosymbionts.
Conclusions
This study exemplifies how understanding the autecology of an organism can be enhanced by detailed investigation of internal anatomy. This gastropod is a large and active species that is abundant in its hydrothermal vent field ecosystem. Yet all of its remarkable features—protective dermal sclerites, circulatory system, high fecundity—can be viewed as adaptations beneficial to its endosymbiont microbes. We interpret these results to show that, as a result of specialisation to resolve energetic needs in an extreme chemosynthetic environment, this dramatic dragon-like species has become a carrying vessel for its bacteria
Towards a Microscopic Model of Magnetoelectric Interactions in Ni3V2O8
We develop a microscopic magnetoelectric coupling in NiVO (NVO)
which gives rise to the trilinear phenomenological coupling used previously to
explain the phase transition in which magnetic and ferroelectric order
parameters appear simultaneously. Using combined neutron scattering
measurements and first-principles calculations of the phonons in NVO, we
determine eleven phonons which can induce the observed spontaneous
polarization. Among these eleven phonons, we find that a few of them can
actually induce a significant dipole moment. Using the calculated atomic
charges, we find that the required distortion to induce the observed dipole
moment is very small (~0.001 \AA) and therefore it would be very difficult to
observe the distortion by neutron-powder diffraction. Finally, we identify the
derivatives of the exchange tensor with respect to atomic displacements which
are needed for a microscopic model of a spin-phonon coupling in NVO and which
we hope will be obtained from a fundamental quantum calculation such as LDA+U.
We also analyze two toy models to illustrate that the Dzyaloskinskii-Moriya
interaction is very important for coexisting of magnetic and ferroelectric
order but it is not the only mechanism when the local site symmetry of the
system is low enough.Comment: 20 pages, 10 figure
Fault mechanics and post-seismic deformation at Bam, SE Iran
The extent to which aseismic deformation relaxes co-seismic stress changes on a fault zone is fundamental to assessing the future seismic hazard following any earthquake, and in understanding the mechanical behaviour of faults. Here we use models of stress-driven afterslip and viscoelastic relaxation, in conjunction with post-seismic InSAR measurements, to show that there has been minimal release of co-seismic stress changes through post-seismic deformation following the 2003 6.6 Bam earthquake. Our analysis indicates the faults at Bam remain predominantly locked, suggesting that the co- plus interseismically accumulated elastic strain stored downdip of the 2003 rupture patch may be released in a future 6 earthquake. Our observations and models also provide an opportunity to probe the growth of topography at Bam. We find that, for our modelled afterslip distribution to be consistent with forming the sharp step in the local topography over repeated earthquake cycles, and also to be consistent with the geodetic observations, requires either (1) far-field tectonic loading equivalent to a 2–10 MPa deviatoric stress acting across the fault system, which suggests it supports stresses 60–100 times less than classical views of static fault strength, or (2) that the fault surface has some form of mechanical anisotropy, potentially related to corrugations on the fault plane, that controls the sense of slip.This work forms part of the NERC- and ESRC-funded project ‘Earthquakes without Frontiers’, and was partly supported by the NERC large grant ‘Looking into the Continents from Space’. SW was partly supported by the BGS
Revisiting Static and Dynamic Spin Ice Correlations in Ho2Ti2O7
Elastic and inelastic neutron scattering studies have been carried out on the
pyrochlore magnet Ho2Ti2O7. Measurements in zero applied magnetic field show
that the disordered spin ice ground state of Ho2Ti2O7 is characterized by a
pattern of rectangular diffuse elastic scattering within the [HHL] plane of
reciprocal space, which closely resembles the zone boundary scattering seen in
its sister compound Dy2Ti2O7. Well-defined peaks in the zone boundary
scattering develop only within the spin ice ground state below ~ 2 K. In
contrast, the overall diffuse scattering pattern evolves on a much higher
temperature scale of ~ 17 K. The diffuse scattering at small wavevectors below
[001] is found to vanish on going to Q=0, an explicit signature of expectations
for dipolar spin ice. Very high energy-resolution inelastic measurements reveal
that the spin ice ground state below ~ 2 K is also characterized by a
transition from dynamic to static spin correlations on the time scale of
10^{-9} seconds. Measurements in a magnetic field applied along the
[10] direction in zero-field cooled conditions show that the system
can be broken up into orthogonal sets of polarized alpha chains along
[10] and quasi-one-dimensional beta chains along [110]. Three
dimensional correlations between beta chains are shown to be very sensitive to
the precise alignment of the [10] externally applied magnetic field.Comment: 11 pages, 10 figures. Submitted for publicatio
- …